Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small bug, large impact: A new key player in the marine nitrogen cycle

13.09.2016

A study published in Nature Microbiology shows for the first time that a small nitrogen-fixing symbiosis contributes extensively to the total nitrogen fixation in the tropical North Atlantic. Nitrogen fixation is the largest source of nitrogen to the open ocean, and this symbiosis is thus a key player in the marine nitrogen cycle.

Nitrogen is essential to all forms of life: It is part of proteins, nucleic acids and other cellular structures. However, many oceanic regions are limited by the availability of nitrogen, such as the tropical North Atlantic. In this region, nitrogen supply to the open ocean comes mainly from nitrogen fixation and to a lesser extent from atmospheric deposition.


Clara Martínez-Pérez on board the research vessel, sampling an incubation bottle from a surface water flow-through incubator.

Tim Ferdelman


The small symbiosis of UCYN-A with a unicellular alga looks inconspicuous, but it seems to be a key player in the marine nitrogen cycle (green: UCYN-A-cell, orange/blue: algal cell)..

Clara Martínez-Pérez /Max-Planck-Institute for Marine Microbiology

Nitrogen fixation is the transformation of the inert nitrogen gas from the atmosphere into other forms of nitrogen, which can then be taken up by other microorganisms such as primary producers. The organisms performing nitrogen fixation are called nitrogen fixers or diazotrophs.

They can be considered the fertilizers of the large areas of the nutrient-limited oceans. Thus, it is crucial to determine the factors and key players of nitrogen fixation in order to understand how global changes might impact nitrogen fixation in the future and the possible resulting impacts on the ocean’s productivity.

Clara Martínez-Pérez and co-authors from the Max Planck Institute for Marine Microbiology in Bremen (MPI Bremen), the University of Kiel, and the GEOMAR in Kiel have now assessed the contribution of one of the most abundant diazotrophs (UCYN-A) in the ocean to total nitrogen fixation in the tropical North Atlantic. Despite its relatively high abundance compared to other diazotrophs, the activity and contribution of this small diazotroph, living in symbiosis with a small unicellular alga, has never been determined before. Their surprising results show that previous knowledge about the key players in nitrogen fixation might have to be revised.

A new player in the nitrogen cycle

The tropical North Atlantic, harboring about one quarter of global nitrogen fixation, has previously been believed to be dominated by Trichodesmium, a filamentous cyanobacterium blooming in such large numbers that it can be seen with the naked eye and by satellites. “However, there are many other diazotrophs in the ocean whose importance had not yet been quantified”, Martínez-Pérez explains.

To quantify the importance of UCYN-A, the scientists used several methods including a NanoSIMS, which allows for the detection and quantification of the activity of individual cells. “By this, we can quantify the ecological role of UCYN-A in the marine nitrogen cycle, which is essential information for global models of nutrient cycling”, says co-author Wiebke Mohr from the MPI Bremen.

Their results were up for a surprise: Martínez-Pérez and her colleagues show that UCYN-A is as important for nitrogen fixation in the tropical North Atlantic as is Trichodesmium. “Although Trichodesmium cells were very numerous, they were not fixing much nitrogen gas", says Martínez-Pérez. In contrast, the much smaller UCYN-A was very active. Living in association with a small alga also means that UCYN-A not only fixes nitrogen for itself but also the host alga. As a result, it contributed as much as Trichodesmium to the total nitrogen fixation across the tropical North Atlantic.

Oceanic cosmopolitans

The scientists further explored the global distribution of UCYN-A. They are found all over the oceans from the Arctic to the Antarctic circles (which is not the case for Trichodesmium which is usually in waters above 20 °C). “Thus, UCYN-A has the potential to be one of the main contributors to nitrogen fixation not just in the tropics but around the globe”, says Martínez-Pérez. It is interesting to note that, despite their activity and ecological relevance, the abundance of these symbioses is very low compared to other microorganisms in the oceans.

“One of the major challenges when quantifying these organisms was to actually find them under the microscope, since they are so rare”, explains Mohr. The low abundance of these organisms implies that they are rapidly consumed by grazers or otherwise removed from the surface waters. This would result in a very efficient transfer of the fixed nitrogen to the oceanic food web, and suggests that the contribution of UCYN-A to nitrogen fixation is even higher than quantified here. “Next, we would like to look into other regions of the ocean and quantify the abundance and activity of UCYN-A there. This will allow for deeper insights into their global role”, concludes Martínez-Pérez.

Original publication

The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Clara Martínez-Pérez, Wiebke Mohr, Carolin R. Löscher, Julien Dekaezemacker, Sten Littmann, Pelin Yilmaz, Nadine Lehnen, Bernhard M. Fuchs, Gaute Lavik, Ruth A.
Schmitz, Julie LaRoche, Marcel M. M. Kuypers. Nature Microbiology
DOI: 10.1038/nmicrobiol.2016.163

Contact

Dr. Wiebke Mohr,
Phone: 0421 2028 - 630
E-Mail: wmohr@mpi-bremen.de

Clara Martínez-Pérez
Phone: 0421 2028 - 653
E-Mail: cmartine@mpi-bremen.de

Or the press office

Dr. Fanni Aspetsberger
Phone: 0421 2028 947
E-Mail: faspetsb@mpi-bremen.de

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>