Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slip layer dynamics reveal why some fluids flow faster than expected

02.08.2019

New microscopy technique provides unprecedented insight into nanoscopic slip layers formed in flowing complex liquids

Whether it is oil gushing through pipelines or blood circulating through arteries, how liquids flow through tubes is perhaps the most fundamental problem in hydrodynamics. The challenge is to maximize transport efficiency by minimizing the loss of energy to friction between the moving liquid and the stationary tube surfaces.


As indicated by the dark red arrows, fluid flowing through a narrow cylindrical pipe moves at different speeds: faster near the center of the tube than at the edges (Poiseuille flow). The layer in contact with the internal surface of the pipe is known as slip layer or depletion layer, and allows the bulk fluid to 'slip' past the walls more efficiently. The IBS team developed a new technique (STED-anisotropy) to experimentally measure what happens directly at the slip layer, and characterized changes to the depletion layer dimension and composition as a function of flow rate. Careful analysis of polymer relaxation times shows that above a critical flow rate, shear forces lead to the elongation and alignment of the polymer (chain with white beads) along the direction parallel to the flow.

Credit: IBS

Counterintuitively, adding a small amount of large, slow moving polymers to the liquid, thus forming a 'complex liquid', leads to faster, more efficient transport.

This phenomenon was speculated to arise from the formation of thin layer around the internal wall of the tube, known as depletion layer or split layer, in which the polymer concentration was significantly lower than in the bulk solution.

However, given the inherently thinness of this layer, which is only a few nanometers thick, on the order of the polymer size, direct experimental observation was difficult, and so progress in the field relied heavily on bulk measurements and computer simulations.

Researchers at the Center for Soft and Living Matter, within the Institute for Basic Science (IBS, South Korea), made a significant advance in the field by successfully imaging the depletion layer in polymer solutions flowing through microchannels.

Their study, published in the Proceedings of the National Academy of Sciences, USA, relied on the development of a novel super-resolution microscopy technique that allowed the researchers to see this layer with unprecedented spatial resolution.

The first observation of this phenomenon was made nearly a century ago. Experimental studies on high molecular weight polymer solutions revealed a puzzling observation: there was an apparent discrepancy between the measured viscosity of the polymer solution and the rate at which it flowed through a narrow tube.

The polymer solution would always flow faster than expected. Furthermore, the narrower the tube, the larger this discrepancy. This sparked an interest which persists to this day.

"Depletion layer dynamics was a problem we found very interesting, but it was challenging to make progress with current experimental techniques," says John T. King, the corresponding author on the study. "We knew the first step needed to be the development of a technique that could provide new information."

Using his expertise in super-resolution microscopy, Seongjun Park, the first author of the study, developed a novel adaptation of stimulated emission depletion (STED) microscopy that has sufficient spatial resolution and contrast sensitivity to directly observe depletion layers. At the same time, Anisha Shakya, the co-author of the study, applied her knowledge of polymer physics to optimize a suitable imaging system.

The team decided that the best approach would be to apply the newly developed STED-anisotropy imaging to a solution of high molecular weight polymer, polystyrene sulfonate (PSS), flowing through 30 μm-wide silica microfluidic channels.

PSS' behaviour was tracked with the help of fluorescent dyes. Transient interactions between the side-chains of PSS and the dye slow the rotational movement of the dye molecule. These small changes reveal PSS position and concentration with a spatial resolution of 10s of nanometers.

The researchers first confirmed the formation of depletion layers at the wall and measured that the dimensions of the depletion layer were consistent with PSS size. They then observed that the thickness of the depletion layer narrowed when the solution started to flow. Interestingly, changes to the depletion layer dimension only onset after a critical flow rate that corresponds to known changes in the polymer conformation. This was the first direct experimental confirmation of this phenomenon, which was predicted from molecular dynamics simulations years ago.

Surprisingly, it was also observed that changes to the depletion layer composition occurs at unexpectedly low flow rates. In particular, polymer segments are pulled away from the wall, leaving almost pure solvent, without polymers, close to the wall. This can be attributed to hydrodynamic lift forces, like aerodynamic lift in airplanes, that arise from asymmetric flow at the wall.

While hydrodynamic lift has been well characterized in computer simulations, and observed in macroscopic systems, (for instance, flounders fight against this lift better than other animals due to their flatter shape), direct experimental observations on nanoscopic length scales have remained elusive.

It is anticipated that this promising approach can provide new information on complex fluids under flow in different regimes, such as turbulent flow, like what is seen in swiftly flowing rivers, or flow through nanofluidic devices.

Media Contact

Dahee Carol Kim
clitie620@ibs.re.kr
82-428-788-133

 @IBS_media

http://www.ibs.re.kr/en/ 

Dahee Carol Kim | EurekAlert!
Further information:
http://dx.doi.org/10.1073/pnas.1900623116

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>