How the Slime Mold Gets Organized

The so-called cellular slime mold, a unicellular organism that may transition into a multicellular organism under stress, has just been found to have a tissue structure that was previously thought to exist only in more sophisticated animals.

What's more, two proteins that are needed by the slime mold to form this structure are similar to those that perform the same function in more sophistical animals.

Shortly after an animal embryo forms, it develops a single layer of cells that, shaped like a hollow ball, is empty at its center. Acting as a kind of “man behind the curtain” that directs these cells to organize into this hollow formation are several proteins that help each cell touch its neighbors but keep its top surface exposed to the formation's empty interior.

Even after animals grow beyond the embryo stage, the cells in many organs of their bodies maintain this type of hollow structure. These organs include those in the digestive tracts of animals, which feature a layer of cells, called epithelial cells, that face inward to form a hollow structure and are shaped asymmetrically to give organs their directionality. For example, the asymmetric epithelial cells of animal intestines face inward to form a hollow structure through which nutrients are absorbed. Likewise, the asymmetric epithelial cells of animal glands, such as salivary and endocrine glands, also face inward to form a hollow structure. But instead of absorbing substances as do the epithelial cells of animal intestines, these glandular epithelial cells secrete into their hollow structure substances that they produce.

With funding from the National Science Foundation, Daniel Dickinson, W. James Nelson and William Weis–all of Stanford University–took a careful look at the final, mature stage of slime mold development under a high-powered microscope. They report their results in the journal Science, March 11, 2011.

The slime mold spends most of its life as a single-celled organism, living in soil and preying on bacteria. However when food runs short, thousands of slime mold cells aggregate to form a mound. They then grow into a fruiting body–which is a stalk, a few millimeters tall, whose top peeks over the surface of the ground and holds spores. The researchers found that the organization and directionality of cells in this top part of the extending stalk are surprisingly similar to those of the epithelial cells of some organs of higher animals.

Dickinson and his colleagues also discovered that in order for the cells in the top of the slime mold's stalk to organize into an epithelium, they need analogues to two of the many proteins that are needed by animal cells to organize into an epithelium. Called alpha-catenin and beta-catenin, these slime mold analogues are genetically and biochemically similar to their animal versions. And when the researchers removed these analogues from the cells of slime molds, they lost their ability to organize correctly.

In addition to requiring proteins that are similar to those required by some animal epithelial tissues, the slime mold's epithelium tissue behaves similarly to the epithelial tissue of some animals–it is secretory. It secretes proteins that coat the stalk of the fruiting body and give it the rigidity it needs to send its spores out onto the ground in search of new food.

“We don't know whether the ancient ancestor of slime molds and animals was actually able to form an epithelium,” says Dickinson, “but it must have had alpha-catenin and beta-catenin, and we suspect that these proteins had some role in organizing cells.”

Media Contacts
Bruce Goldman, Stanford University (650) 725-2106 goldmanb@stanford.edu
Lily Whiteman, National Science Foundation (703) 292-8310 lwhitema@nsf.gov
Principal Investigators
Daniel Dickinson, Stanford University (650) 723-9788 ddickins@stanford.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Media Contact

Lily Whiteman EurekAlert!

More Information:

http://www.nsf.gov

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors