Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slight Differences – New Insights into the Regulation of Disease-Associated Genes

16.06.2015

Researchers of the Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, in collaboration with the National Heart Research Institute Singapore (NHRIS), have gained new insights into the regulation of disease-associated genes. They used a new technique that enables them to observe gene regulation at the level of protein production. They could thus capture more individual gene regulations than with traditional methods that only capture gene expression and transcription (Nature Communications, doi: 10.1038/ncomms8200)*.

When a gene is read, its blueprint for proteins encoded in the language of DNA is transcribed in the cell nucleus into RNA. “At this level, many but by far not all of the individual differences in gene regulation can be identified,” said Professor Norbert Hübner, senior author of the publication and head of the research group Genetics and Genomics of Cardiovascular Diseases at the MDC.

Together with Sebastian Schafer (MDC, NHRIS) and Eleonora Adami (MDC) as well as researchers from several research institutions in Berlin, the Netherlands, England and the Czech Republic, they investigated gene regulation on the next level, translation. It takes place outside the cell nucleus, in the cell plasma. During translation, the RNA sequence is translated into amino acid sequences and assembled into proteins in the protein factories of the cell, the ribosomes.

First, the researchers searched the entire genome of two strains of rats, – one strain had high blood pressure, the other strain not – and specifically investigated genes of the heart and liver tissue. Then they used a new technique called ribosome profiling, abbreviated ribo-seq, which enables them to determine what proportion of the transcriptome is actively translated into proteins.

The result: They observed almost double the number of differentially expressed heart and liver genes in translation as in transcription. Next, they compared these data with the corresponding human genes in genome-wide association studies.

This comparison revealed that a large number of heart and liver genes in humans are regulated primarily during translation. The researchers are confident that capturing interindividual differences in the translated genome will lead to new insights into the genes and regulatory pathways underlying disease.

*Translational regulation shapes the molecular landscape of complex disease phenotypes
Sebastian Schafer1,2,*, Eleonora Adami1,*, Matthias Heinig1,3, Katharina E. Costa Rodrigues1, Franziska Kreuchwig1, Jan Silhavy4, Sebastiaan van Heesch1, Deimante Simaite1, Nikolaus Rajewsky5,6, Edwin Cuppen7, Michal Pravenec4, Martin Vingron3, Stuart A. Cook2,8,9 & Norbert Hübner1,6,10
1Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
2National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore.
3Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany.
4Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenska 1083, 142 20 Prague 4, Czech Republic.
5Systems Biology of Gene Regulatory Elements, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
6DZHK (German Centre for Cardiovascular Research), Partner Site, 13347 Berlin, Germany.
7Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
8National Heart and Lung Institute, Imperial College London, London SW3 6NP, UK.
9Duke-National University of Singapore, Singapore 169857, Singapore.
10Charité Universitätsmedizin, 10117 Berlin, Germany.
* These authors contributed equally to this work.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
https://www.mdc-berlin.de/en

Weitere Informationen:

https://www.mdc-berlin.de/44659109/en/news/2015/20150616-slight_differences___ne...

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>