Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleeping Beauty enables efficient gene transfer in haematopoietic stem cells of humans

16.03.2018

Gene therapy of haematopoietic stem cells aims at a life-long therapeutically effective correction of these cells in humans with particular genetic disorders. This therapeutic approach has proved to be effective in clinical trials while the risk of leukaemia development as a side-effect of the therapy must be kept as low as possible. In an international research network, researchers of the Paul-Ehrlich-Institut have developed a method using "jumping genes" (transposons) to transfer genes efficiently and to anchor them in the genome of the modified cells. Molecular Therapy reports on the results.

In gene therapy of certain congenital disorders, the therapeutic gene is transferred into the target cells using particular transport vehicles, also known as vectors. Gene transfer into haematopoietic (blood forming) stem cells has been successfully tested in clinical trials for the treatment of various genetic disorders caused by a defect in one particular gene (monogenetic).


Stable gene transfer and expression of a Venus fluorescence marker gene mediated by Sleeping Beauty transposons in hematopoietic progenitor cells.

Source: PEI

Examples include certain immune defects such as the group of Severe Combined Immune Deficiency disorders (SCID). In some studies, however, isolated cases of oncogenic mutations triggered by gene vector integration led to cancer (leukaemia) as an undesired side-effect of the therapy. Major efforts have ever since been undertaken to develop safer vector systems.

The research team of Dr Zoltán Ivics, head of Division Medical Biotechnology of the Paul-Ehrlich-Institut uses Sleeping Beauty for therapeutic gene transfer into human cells. The Sleeping Beauty (SB) transposon system is a non-viral vector, which is low-cost to manufacture, relatively simple to use. Up to now, its clinical use for hematopoietic stem cell therapy has been hampered by technical challenges.

In an international collaboration with other researchers from Germany, Spain and France, Ivics and his team have shown that gene constructs can be incorporated 20-times more efficiently into the genomes of hematopoietic stem cells if minicircle DNA is used to carry the SB transposon. Minicircle DNA is very small because sequences used for the manufacturing process of plasmids have been removed.

In addition, the efficacy and safety of the stable gene transfer ex vivo (outside the body) into the haematopoietic stem cells could be significantly increased by providing the transposase enzyme in the form of a synthetic messenger DNA (mRNA). This enzyme is required for the gene transfer.

"We have methodologically further developed the Sleeping Beauty transposon system in such a way that clinical use of this method is now possible," said Dr Ivics, as he described the potential use of these research results.

Background: Transposon "Sleeping Beauty" and jumping genes

A transposon – jumping gene – is a section of DNA which can change its position in the genome (transposition). The ability to integrate itself into the genome can be used for the gene transfer. Sleeping Beauty is an artificial transposon derived from transposons occurring in fish as early as ten million years ago. The name was given to it based on Grimm's fairy tale "Sleeping Beauty".

Original Publication

Holstein M, Mesa-Nuñez C, Miskey C, Almarza E, Poletti V, Schmeer M, Grueso E, Ordóñez Flores JC, Kobelt D, Walther W, Aneja MK, Geiger J, Bonig HB, Izsvák Z, Schleef M, Rudolph C, Mavilio F, Bueren JA, Guenechea G, Ivics Z (2018):
Efficient Non-viral Gene Delivery into Human Hematopoietic Stem Cells by Minicircle Sleeping Beauty Transposon Vectors.
Mol Ther Jan 17 [Epub ahead of print].
DOI: https://doi.org/10.1016/j.ymthe.2018.01.012


The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.

Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute.

The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

https://www.sciencedirect.com/science/article/pii/S1525001618300194?via%3Dihub - Open Access full text article
https://www.pei.de/EN/information/journalists-press/press-releases/2018/04-sleep... - Link to this press release on the Website of the Paul-Ehrlich-Institut

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>