Skin cells provide new knowledge about brain functions

But new research findings from Örebro University in Sweden show that it is just as good to study a certain type of skin cells, since they function in a way that is similar to a type of brain cells that are suspected of playing a major role in both disorders.

“Among other benefits, this makes it considerably easier to develop and test new drugs,” says Ravi Vumma, and the head of the research group Nikolaos Venizelos who is presenting the findings in the journal Neuroscience Letters.

One of the causes of schizophrenia and bipolar disorder (previously called manic-depressive syndrome) is assumed to be that the level of important transmitter substances in the brain is too low, which negatively impacts the transmission of signals. That, in turn, is because the cells in the blood-brain barrier are not transporting enough of the amino acids that are needed for the brain to be able to produce signal substances like dopamine, noradrenalin, and serotonin.

“Altered transport of the amino acids tyrosine and tryptophan may be one explanation for the disrupted signal transmission in patients with schizophrenia and bipolar disorder,” Ravi Vumma explains.

We have therefore mapped how the transport of the two amino acids takes place, what paths they take into the cell. Various amino acids use different transport systems, and to enhance our knowledge about schizophrenia and bipolar disorder it is necessary to identify which systems are relevant for tyrosine and tryptophan.

Moreover, we want to find out whether connective tissue cells in the skin, fibroblasts, transport amino acids in the same way as endothelial cells in the brain, as this would constitute a dramatic enhancement of our ability to study how substances pass through the blood-brain barrier. The two cell types have a similar membrane function, to close out undesirable substances and only transport substances the body needs.

“The research shows that tyrosine and tryptophan largely use the same transport system and that it functions in the same way in both skin fibroblasts and the endothelial cells of the blood-brain barrier.”

On top of this we were able to determine that the inward transport of tyrosine in fibroblasts was lower in patients with bipolar disorder compared with a healthy control group. Since previous research has shown that it was lower in individuals with schizophrenia, his discovery indicates that the two diseases involve a common alteration that is probably caused by a common genetic variation.

The head of the research group Nikolaos Venizelos says that Ravi Vumma's discoveries show that human skin fibroblasts can be used for studying the transport of both amino acids and drugs that use the same transport system. One of the problems today is that only a few of the drugs being developed to affect the brain are able to get through the blood-brain barrier, which means that they cannot have the desired effect.

For more information please contact:
Ravi Vumma, cell phone: +46 (0)761-66 60 44, ravi.vumma@oru.se.
Assoc Professor Nikolaos Venizelos head of the research group, cell phone: + 46 (0)702 55 85 20, nikolaos.venizelos@oru.se, Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Sweden

Pressofficer Linda Harradine; linda.harradine@oru.se; +46 70 643 1470

Media Contact

Linda Harradine idw

More Information:

http://www.vr.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors