Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sister glue makes sex successful – how sets of genes stick together

25.11.2010
A glue made of protein which sticks our packages of genes together may hold the secret of successful sex, say scientists today. It may also help to explain why older mothers are much more at risk of having babies with Down’s syndrome or other genetic abnormalities caused by the failure of the original embryo cells to divide and separate properly.

Another protein glue usually makes it possible for our genes to be copied and kept together as parallel strands before neatly splitting into two batches of separate chromosomes to become the nucleus of new cells, according to research published in the current issue of the scientific journal Cell (November 24, 2010).


Human mitotic chromosomes, Cohesin dyed in blue
Copyright: IMP

The action of the ‘sister’ glue called sororin may be the missing link in the way the main glue protein called cohesin allows identical DNA strands to bind together in such a stable way that all the chromosomes in a cell can line up and then divide into their two groups during cell division. It is this action which makes all sex possible, allowing genes from two different people, the parents, to mix together to make a new unique individual, their baby.

It is also the mechanism which most often goes wrong in embryo fertilisation in older mothers, leading to miscarriages during pregnancy or genetic abnormalities such as Down’s syndrome babies born with their characteristic facial features and mental retardation. Recent research has shown that as many as 35% of human eggs from women in their forties have either an extra or a missing chromosome. Now scientists have finally started to study the mechanism behind these mistakes made within our bodies.

“We believe that this second glue protein, sororin, is critical in understanding the way embryo cells make these mistakes when copying chromosomes”, says Jan-Michael Peters from the Institute of Molecular Pathology, Vienna, Austria, who led the new research.

The puzzle has been to find out how the glue protein, cohesin makes the two halves of each copied chromosome stick together until exactly the right moment when a cell divides. It has to stop itself being prematurely cut by other proteins in the cell nucleus which act as biological scissors when the cell separates.

Now the Austrian research team has discovered that the new glue protein sororin acts as a shield for the cohesin, protecting it from being removed from DNA too early, stopping the individual members of the pairs of chromosomes drifting free from each other.

“If the cohesion lets go too soon, the individual chromosome halves run the risk of ending up in the wrong cell nucleus, which could mean that a new egg cell has one too many or one too few chromosomes”, says Tomoko Nishiyama from the Peters research team. “This can lead to an unviable egg, an embryo that dies in the womb, a miscarriage, or a baby born with genetic abnormalities like Down’s syndrome”.

"While this work gives us a new and important bit of basic information about cell division, it also points us towards further research in understanding exactly what goes wrong with the missing and extra chromosomes which cause genetic diseases", Jan-Michael Peters adds.

The paper "Sororin Mediates Sister Chromatid Cohesion by Antagonizing Wapl" (Nishiyama et al.) is published in Cell on Wednesday, November 24, 2010.

About the IMP
The IMP is a basic research institute in Vienna, Austria. Its main sponsor is Boehringer Ingelheim International, headquartered in Germany. With over 220 employees from 30 different nations,the IMP is a Center of Excellence in the life sciences and the core unit of the Campus Vienna Biocenter. Research at the IMP aims at elucidating the molecular basis of normal development and disease.
Contact
Dr. Heidemarie Hurtl
IMP-IMBA Communications
Tel. +43 1 79730-3625
mobile: +43 (0)664 8247910
hurtl@imp.ac.at
Scientific Contact
Dr. Jan-Michael Peters
Jan-Michael.Peters@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>