Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single mutation dramatically changes structure and function of bacteria's transporter proteins

23.10.2019

Study of E. coli bacteria may provide clues about drug resistance

Swapping a single amino acid in a simple bacterial protein changes its structure and function, revealing the effects of complex gene evolution, finds a new study published in the journal eLife.


Schematic showing the two protein subunits (blue and green) of a simple transporter in E. coli changing the direction of its opening so it can pump a toxic compound (orange) across the cell's membrane (grey).

Credit: Nathaniel Traaseth and Ampon Sae Her (CC BY 4.0)

The study--conducted using E. coli bacteria--can help researchers to better understand the evolution of transporter proteins and their role in drug resistance.

"We were quite surprised by how minor mutations can influence the structure and function of transporter proteins," said Nate Traaseth, associate professor of chemistry at New York University and the study's senior author.

Cells are bound by a thin membrane layer that protects its interior from the outside environment. Within this layer are transporter proteins that control which substances are allowed in and out of the cell. These transporters actively move substances across the cell membrane by loading cargo on one side of the layer, then changing their structure to release it on the other side.

Membrane transporters are typically made up of multiple repeating units. In more complex transporters, the genetic sequence for each of these structural units is fused together into a single gene that codes for the protein.

It is thought that the repeated pattern evolved from smaller membrane protein genes that had duplicated and fused together. But are there evolutionary advantages to having more complex transporters being produced from a single, fused gene?

To investigate this, Traaseth and colleagues Maureen Leninger and Ampon (Callie) Sae Her in NYU's Department of Chemistry examined a simple transporter found in E. coli bacteria, which is plentiful in human and animal intestines. However, some strains of E. coli can cause serious illness and are increasingly resistant to antibiotics, which occurs when they pump out toxic compounds using transporters in their membrane.

The E. coli transporter, called EmrE, contains two identical protein subunits that work together to move toxic molecules across the membrane and eliminate them from the cell.

Experiments revealed that changing a single amino acid--the building blocks that make up proteins--in one of the two protein subunits to make them slightly different from each other dramatically modified the transporter's structure and function. The subtle amino acid swap disrupted the balance of inward- and outward-facing proteins.

Importantly, changing the single amino acid altered the transporter's ability to remove toxic chemicals from E. coli and reduced the bacteria's resistance to drugs--which may have future implications for drug development and combating antibiotic resistance.

"While the clinical application of these findings is a few steps away, understanding the evolution of drug transporters gives us new insight into how Mother Nature may harness mutations to provide drug resistance," said Traaseth.

The researchers note that the effects of a minor change to one of the identical halves of the EmrE transporter demonstrates how sensitive membrane transporters are to mutations.

"This observation could also help explain why evolution favored more complex transporters comprised of fused genes in which single amino acid changes can alter how the transporter operates," added Traaseth.

###

The research was supported by the National Institutes of Health (R01 AI108889 and S10OD016343) and National Science Foundation (MCB 1506420).

Media Contact

Rachel Harrison
rachel.harrison@nyu.edu
212-998-6797

 @nyuniversity

Rachel Harrison | EurekAlert!
Further information:
https://www.nyu.edu/about/news-publications/news/2019/october/single-mutation-dramatically-changes-structure-and-function-of-b.html
http://dx.doi.org/10.7554/eLife.48909

More articles from Life Sciences:

nachricht Researchers discover vaccine to strengthen the immune system of plants
24.01.2020 | Westfälische Wilhelms-Universität Münster

nachricht Brain-cell helpers powered by norepinephrine during fear-memory formation
24.01.2020 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>