Single gene might explain dramatic differences among people with schizophrenia

The study revealed that people with schizophrenia who had a particular version of the microRNA-137 gene (or MIR137), tended to develop the illness at a younger age and had distinct brain features – both associated with poorer outcomes – compared to patients who did not have this version. This work, led by Drs. Aristotle Voineskos and James Kennedy, appears in the latest issue of Molecular Psychiatry.

Treating schizophrenia is particularly challenging as the illness can vary from patient to patient. Some individuals stay hospitalized for years, while others respond well to treatment.

“What's exciting about this study is that we could have a legitimate answer as to why some of these differences occur,” explained Dr. Voineskos, a clinician-scientist in CAMH's Campbell Family Mental Health Research Institute. “In the future, we might have the capability of using this gene to tell us about prognosis and how a person might respond to treatment.”

“Drs. Voineskos and Kennedy's findings are very important as they provide new insights into the genetic bases of this condition that affects thousands of Canadians and their families,” said Dr. Anthony Phillips, Scientific Director at the Canadian Institutes of Health Research Institute of Neurosciences, Mental Health and Addiction.

Also, until now, sex has been the strongest predictor of the age at which schizophrenia develops in individuals. Typically, women tend to develop the illness a few years later than men, and experience a milder form of the disease.

“We showed that this gene has a bigger effect on age-at-onset than one's gender has,” said Dr. Voineskos, who heads the Kimel Family Translational Imaging-Genetics Research Laboratory at CAMH. “This may be a paradigm shift for the field.”

The researchers studied MIR137 — a gene involved in turning on and off other schizophrenia-related genes — in 510 individuals living with schizophrenia. The scientists found that patients with a specific version of the gene tended to develop the illness at a younger age, around 20.8 years of age, compared to 23.4 years of age among those without this version.

“Although three years of difference in age-at-onset may not seem large, those years are important in the final development of brain circuits in the young adult,” said Dr. Kennedy, Director of CAMH's Neuroscience Research Department. “This can have major impact on disease outcome.”

In a separate part of the study involving 213 people, the researchers used MRI and diffusion tensor-magnetic resonance brain imaging (DT-MRI). They found that individuals who had the particular gene version tended to have unique brain features. These features included a smaller hippocampus, which is a brain structure involved in memory, and larger lateral ventricles, which are fluid-filled structures associated with disease outcome. As well, these patients tended to have more impairment in white matter tracts, which are structures connecting brain regions, and serving as the information highways of the brain.

Developing tests that screen for versions of this gene could be helpful in treating patients earlier and more effectively.

“We're hoping that in the near future we can use this combination of genetics and brain imaging to predict how severe a version of illness someone might have,” said Dr. Voineskos. “This would allow us to plan earlier for specific treatments and clinical service delivery and pursue more personalized treatment options right from the start.”

This research was funded by the Canadian Institutes of Health Research, the Brain & Behavior Research Foundation and the Ontario Mental Health Foundation.

Media contact: Anita Dubey; (416) 535-8501 ext. 4932; anita.dubey@camh.ca.

The Centre for Addiction and Mental Health (CAMH) is Canada's largest mental health and addiction teaching hospital, as well as one of the world's leading research centres in its field.

CAMH combines clinical care, research, education, policy development and health promotion to help transform the lives of people affected by mental health and addiction issues. CAMH is fully affiliated with the University of Toronto, and is a Pan American Health Organization/World Health Organization Collaborating Centre. For more information, please visit www.camh.ca.

The Canadian Institutes of Health Research (CIHR) is the Government of Canada's health research investment agency. CIHR's mission is to create new scientific knowledge and to enable its translation into improved health, more effective health services and products, and a strengthened Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to more than 14,100 health researchers and trainees across Canada.

Media Contact

Anita Dubey EurekAlert!

More Information:

http://www.camh.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors