Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single enzyme helps drive inflammation in mice, provides target for new sepsis drugs

14.08.2019

Sepsis occurs when the body goes overboard in its attempt to fight off an infection. Immune cells rush in, overreact and wreak havoc on tissues and organs, often resulting in organ failure and death.

Researchers at University of California San Diego School of Medicine recently found that removing the enzyme PHLPP1 improved outcomes in a mouse model of sepsis.


HeLa cells expressing PHLPP (left), the segment with the nuclear localization signal (middle), and that same segment mutated (right).

Credit: UC San Diego School of Medicine

PHLPP1 controls many cell behaviors by removing phosphates (small chemical tags) from other proteins. And, it now turns out, PHLPP1 also influences inflammation.

The study, published August 13, 2019 in eLife, introduces the possibility that inhibiting PHLPP1 could form the basis for new sepsis treatments in humans.

"Most research on inflammation has typically focused on kinases, enzymes that add phosphate tags to other proteins," said senior author Alexandra Newton, PhD, professor in the Department of Pharmacology at UC San Diego School of Medicine. "It's exciting to have a completely new target for sepsis -- the enzymes that remove them."

Newton's team discovered PHLPP1 a few years ago and have since detailed its role in suppressing tumors. Following up on these findings, Newton reached out to UC San Diego School of Medicine colleague Chris Glass, PhD, an expert on inflammation.

Together, their teams uncovered many immune cell genes that are influenced by PHLPP1. But PHLPP1's particular influence on inflammation could be linked to the fact that it removes phosphates from a transcription factor called STAT1, which is known for controlling inflammatory genes.

Newton's team took mice modified to lack the PHLPP1 gene to another UC San Diego School of Medicine colleague, Victor Nizet, MD, an expert on bacterial infections. In separate experiments, Nizet's team administered live E. coli bacteria and lipopolysaccharide (LPS), a component of the bacterium's cell wall that drives immune systems wild, to both PHLPP1-deficient and normal mice.

The difference surprised Newton: Mice without PHLPP1 fared much better. While all normal mice died of the infection-induced sepsis after five days, half of the PHLPP1-deficient mice survived.

Newton's team had already been working with additional collaborators to screen thousands of chemical compounds to identify those few that inhibit PHLPP1. Now that they know PHLPP1 inhibitors might form the basis for new anti-sepsis drugs, the researchers hope to test these compounds on immune cells in the lab and in the mouse model of sepsis.

Currently, sepsis is addressed by preventing and treating the source infection, often with antibiotics, while maintaining organ health with oxygen and intravenous fluids. Nonetheless, according to the Centers for Disease Control and Prevention, at least 1.7 million adults in the U.S. develop sepsis each year, and nearly 270,000 die as a result. One in three patients who die in a hospital have sepsis.

"Sepsis is the leading cause of death in intensive care units throughout the world, but unfortunately there is not a single approved drug treatment for sepsis," Nizet said. "Discoveries like ours of fundamental signaling pathways that control immune cell behavior during sepsis offer clues for controlling the dangerous inflammation of sepsis while preserving the critical bacterial killing properties of white blood cells."

###

Co-authors include: Ksenya Cohen-Katsenelson, Joshua D. Stender, Agnieszka T. Kawashima, Gema Lordén, Satoshi Uchiyama, all at UC San Diego.

Disclosure: Victor Nizet is a co-founder and scientific advisor for Staurus Pharma, LLC and has equity interest.

Media Contact

Heather Buschman, Ph.D.
hbuschman@ucsd.edu
858-249-0456

 @UCSanDiego

http://www.ucsd.edu 

Heather Buschman, Ph.D. | EurekAlert!
Further information:
http://dx.doi.org/10.7554/eLife.48609

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

Jena Laser Technology Conference brings together top international researchers

12.08.2019 | Event News

 
Latest News

Climate change 'disrupts' local plant diversity, study reveals

16.08.2019 | Life Sciences

Finnish discovery brings new insight on the functioning of the eye and retinal diseases

16.08.2019 | Life Sciences

A Rescue Plan for the Ocean

16.08.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>