Single-cell RNA profiling

Bild: Enrico Khatchapuridze, LMU

“Single-cell technologies are already revolutionizing biology”, as LMU molecular biologist Professor Wolfgang Enard puts it. Enard and his group have now improved an already highly sensitive method in this field and present their findings in Nature Communications.

Single-cell RNA sequencing makes it possible to obtain a snapshot of the functional state of any given cell – a molecular fingerprint, as it were. Essentially, the technique determines the composition of the messenger RNA (mRNA) population present in a cell.

mRNAs are copies ('transcripts') of defined segments of the genetic information encoded in the cell's DNA, which serve as blueprints for the synthesis by specialized organelles called ribosomes of the specific proteins required in each cell type.

Thus the inventory of the mRNAs present in a cell amounts to a list of the proteins made by that cell, which essentially reveals its functional state. By identifying the genes that were active at the time of analysis, it can tell us how these genes are regulated, and what happens when this process is disrupted by infection or other disease states.

The sequencing of all mRNAs from a single cell is a demanding task, and several different procedures have been designed and implemented. All begin with the “reverse transcription” of the isolated mRNAs into DNA by enzymes known as reverse transcriptases.

The DNA copies are then replicated ('amplified') and subjected to sequence analysis. Enard and his colleagues have now systematically modified one of these methods, SCRB-seq (the acronym stands for 'single-cell RNA barcoding'), and significantly increased its sensitivity.

“The trick is to supplement the reverse transcriptase reaction with an agent that increases the density of the medium. This induces molecular crowding, and speeds up the reaction, so that more RNA molecules are transcribed into DNA strands,” Enard explains.

A second modification reduces the incidence of preferential amplification of certain DNAs, which would otherwise distort the representation of the different RNAs present in the original cell. “Together, these modifications make our method, mcSCRB-seq, one of the most effective and economical RNA-seq procedures currently available,” Enard says.

Single-cell RNA sequencing methods are also indispensable for the realization of the Human Cell Atlas. Enard is directly involved in this ambitious international project, which is comparable in scale to the Human Genome Project. Its goal is to assemble a catalog of all human cell types, from embryo to adult, based on their specific patterns of gene activity. The project promises to vastly expand our knowledge of human biology and the origins of human diseases.

Media Contact

Dr. Kathrin Bilgeri
presse@lmu.de
0049-892-180-3423

http://www.uni-muenchen.de 

Media Contact

Dr. Kathrin Bilgeri EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors