Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Singapore team's discovery of new genomic aberrations of gastric cancer could pave the way for precision medicine

08.07.2015

Findings open up possibilities for more targeted therapeutic cures for the disease

Singapore scientists from A*STAR’s Genome Institute of Singapore (GIS) and Institute of Molecular and Cell Biology (IMCB), together with colleagues from the National University Health System (NUHS) and Tan Tock Seng Hospital, have discovered a relationship between Asian gastric cancers and the fusion of two genes.


Immunofluorescence image of human stomach section stained for ARHGAP26 (green), epithelial cadherin (red) and cell nuclei (blue). Epithelial cadherin is present in all epithelial cell types of the stomach, whereas ARHGAP26 is restricted to parietal cells. Since CLDN18 has a similar expression pattern as epithelial cadherin, the fusion of ARHGAP26 to CLDN18 will result in the expression of ARHGAP16 activity in all epithelial cells.

Copyright : A*STAR

The researchers discovered that the fusion of these two genes, known as CLDN18 and ARHGAP26, gives rise to the destruction of the stomach surface barrier, resulting in gastric acids affecting the stomach tissues. Moreover, CLDN18-ARHGAP26 also hampers wound-healing.

Findings from the study were published in the scientific journal Cell Reports.

Structural changes of chromosomes (genome rearrangements), can result in gene fusions with properties that can cause cancer. The three-dimensional organisation of the genome, known as the chromatin structure, plays a role for the generation of rearrangements. Using a technique known as DNA paired-end-tag (DNA-PET) whole genome sequencing, GIS scientists analysed 15 gastric cancers (GCs) from Southeast Asians, and observed that rearrangements were enriched in regions of active genes. They subsequently screened 100 GCs for certain fusion genes that were discovered in the 15 GCs.

Through the sequencing, the scientists identified seven hotspots across the genome which had many rearrangements as well as 136 gene fusions. In three out of the 100 GC cases, they found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding an RHOA inhibitor. The functions of both genes are important for a tight inner surface (epithelium) of the stomach. Epithelial cell lines expressing the fused genes CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT)[1]. Fusion positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix-adhesion, retarded wound healing and inhibition of RHOA. Gain of invasion, a property that contributes to metastases, was seen in cancer cell lines expressing the fusion.

Dr Axel Hillmer, Group Leader of GIS and senior author of the publication said, "We identified five different fusion genes recurrently in several tumours, one of these fusion genes is CLDN18-ARHGAP26. Our simulations indicate that the recurrence is unlikely to be by chance, suggesting that the other four fusion genes might also play a role in the development of gastric cancer."

Overall, CLDN18-ARHGAP26 mediates epithelial disintegration possibly leading to leakage of gastric acids, and the fusion might contribute to invasiveness of tumours once a cell is transformed.

Dr Walter Hunziker, Deputy Director of IMCB and co-senior author of the publication, added, “CLDN18 is a critical component of the gastric epithelial barrier. Fusion of ARHGAP26 to CLDN18 not only interferes with the tethering of CLDN18 to the actin cytoskeleton, but could also affect the actin cytoskeleton by inhibiting RHOA at the wrong location, thereby compromising barrier integrity. The resulting inflammation and gastritis are well known risk factors for gastric cancer.”

“Gastric cancer has a high incidence in Asia, and it is important for Asian scientists to improve our understanding of diseases which are important in our population. This joint study combines the efforts of scientists and clinicians in multiple institutions in Singapore, including GIS, IMCB, TTSH and NUHS,” said Deputy Chief Executive (Academic Enterprise) at NUHS, Assoc Prof Yeoh Khay Guan. “The present new finding describes a fusion gene which causes a breakdown of the protective gastric lining and which could help the cancer to spread. This is one more important step in advancing our understanding of gastric cancer which will ultimately lead to better treatment for this disease.”

Prof Ng Huck Hui, Executive Director at GIS said, “Gastric cancer is the 5th most common cancer worldwide, with the highest incidence in Asia. This is another excellent example of how important collaborations between research institutes, academia and hospitals can result in spectacular discoveries, to advance possible cures for the disease.”

The study, made possible through collaboration between GIS, IMCB, NUHS and Tan Tock Seng Hospital and support by A*STAR, showcased the importance of such collaborative efforts between researchers and clinicians. The Translational and Clinical Research Flagship Programme – The Singapore Gastric Cancer Consortium[2] - is supported by the Singapore National Research Foundation and administered by the Singapore Ministry of Health’s National Medical Research Council.

References:
[1] EMT is a process by which epithelial cells lose their cell polarity and cell-cell adhesion, and gain migratory and invasive properties to become mesenchymal stem cells (multipotent stromal cells that can differentiate into a variety of cell types). EMT is essential for numerous developmental processes including mesoderm formation. EMT has been shown to occur in wound healing, in organ fibrosis and in the initiation of metastasis for cancer progression. (http://en.wikipedia.org/wiki/Epithelial%E2%80%93mesenchymal_transition)

[2] http://www.nmrc.gov.sg/content/nmrc_internet/home/grant/compgrants/tcrcancer.html


Associated links
A*STAR article

Lee Swee Heng | ResearchSEA
Further information:
http://www.researchsea.com

Further reports about: EMT GIS NUHS Singapore epithelial fusion genes gastric gastric cancer genes genomic lines stomach wound healing

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>