Singapore researchers discover a gene that increases incidence of AML

A novel study by the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) found that an increase in a gene known as Leo1 affects other genes that are directly implicated in acute myelogenous leukaemia (AML), increasing the incidence of cancer.

Led by Associate Professor Chng Wee Joo, Deputy Director and Senior Principal Investigator at CSI Singapore and Director of the National University Cancer Institute, Singapore, the scientists discovered that inhibition of Leo1 and Leo1 downstream signalling pathways provide an avenue for targeted treatment of AML. The findings were recently published in Cancer Research, the official journal of the American Association of Cancer Research.

In addition, this is the first study to suggest that the protein PRL-3 plays a role in the regulation of ribonucleic acid (RNA) related processes, a finding which advances the understanding of how the protein contributes to cancer progression. The team's work represents the first large-scale quantitative survey of proteins regulated by PRL-3 in leukaemia.

The elevated expression of PRL-3 has been implicated in the progression and metastasis of an array of cancer types, including gastric, ovarian, cervical, lung, liver, and breast. In particular, the protein PRL-3 is overexpressed in about half of AML patients and associated with poor survival.

Assoc Prof Chng and his team were the first to report that elevated PRL-3 protein expression occurs in about 47 per cent of AML cases while being absent from normal myeloid cells in bone marrow. As a result, PRL-3 is deemed as an attractive therapeutic target that spares normal tissues.

Previously, knowledge of the mechanisms of PRL-3 was limited. In this study, the researchers used a new, advanced SILAC-based mass spectrometry to identify all the protein changes induced by PRL-3 in a comprehensive manner. Using this approach, they discovered that the gene Leo1 serves as a novel target of PRL-3 phosphatase, and inhibition of Leo1 as well as Leo1 downstream signalling pathways provide an avenue for PRL-3 targeted therapy for AML patients.

In the next phase of research, the team is validating several important proteins directly downstream of Leo1 that can possibly be used as biomarkers and drug targets to improve treatment for leukaemia with PRL-3 overexpression.

Assoc Prof Chng said, “Our previous studies showed that PRL-3 is clinical and biologically important in acute myelogenous leukaemia, and may therefore be a useful treatment target. In the current study, we have taken the work further by understanding how PRL-3 confers cancer properties to the leukaemia cells.

This now provides a framework for rational design of a treatment based on mechanistic understanding. In the process, we will also develop biomarkers to better select patients for the treatment and hence, progress towards personalising treatment for leukaemia patients.”

Media Contact

Kimberley Wang Eurek Alert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors