Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating cellular sorting processes

07.03.2017

A plant or an animal cell uses numerous processes to sort and assemble tiny building blocks into larger molecules, to rebuild molecules or to dissolve them. Using synthetic gel particles, scientists try to simulate these cellular procedures; however, mimicking the complexity of natural processes presents a formidable task for scientists.

Researchers from the DWI – Leibniz Institute for Interactive Materials in Aachen and the University of Freiburg now developed a set of four different, micrometer-sized building blocks, which can self-sort and co-assemble into defined compositions and disassemble at the push of a button.


Scientists synthesized four kinds of gel particles, which can co-assemble into different objects. The illustration visualizes this process using colored droplets.

Andreas Walther, University of Freiburg

A set of blue, red, green and yellow Lego bricks helps to visualize this research approach. It is very simple to build a multicolored object from these bricks, without considering the colors of the single bricks. To make it slightly more complicated, one could initially sort the bricks by their color and then build objects that are either blue, red, green or yellow.

Such processes are referred to as ‘unsocial assemblies’ if they are driven by themselves. To make things even more complex, you could also build some objects from red and blue bricks and others from green and yellow bricks. These processes, if running simultaneously, are termed ‘social assemblies’.

The scientists from Aachen and Freiburg solved a similar task; however on a microscopic scale by using small gel particles instead of Lego bricks. These so-called microgels are water-rich, sponge-like gel particles, which can be chemically modified.

“We used four different types of microgels for our experiments. The microgels can self-assemble in an ‘unsocial’ manner, staying amongst themselves, or co-assemble in a ‘social’ manner, with a second type of microgel,” explains Dr. Alexander Kühne from DWI. He coordinated this project together with Prof. Dr. Andreas Walther, a former DWI scientist who recently moved to the University of Freiburg.

The challenge of this project was to enable the microgels to distinguish between right and wrong partners. To achieve this, the scientists integrated molecular interactions so that only specific types of microgels would interact with each other – just like a key, which can only open a very specific lock.

However, instead of keys and locks, the researchers applied switchable molecules that integrate into cyclic sugar moieties. Triggered by certain chemical conditions or by light the researchers could control the molecular shape and their interactions during the experiment. This way, the microgels can self-sort, self-assemble and disassemble at the push of a button.

“We use these types of experiments to get a better understanding of processes running in natural cells,” says Alexander Kühne. “In addition, progress in this field of research will eventually help us to develop biologically inspired, interactive materials.”

Publication: Kang Han, Dennis Go, Thomas Tigges, Khosrow Rahimi, Alexander J. C. Kuehne, Andreas Walther, “Social Self-Sorting of Colloidal Families in Co-Assembling Microgel Systems”, Angewandte Chemie International Edition 2017, DOI: 10.1002/anie.201612196.

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft
Further information:
http://www.dwi.rwth-aachen.de

More articles from Life Sciences:

nachricht Numbers count in the genetics of moles and melanomas
16.08.2019 | University of Queensland

nachricht Working out why plants get sick
16.08.2019 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>