Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simpler than expected: A microbial community with reduced diversity cleans up after algal blooms

29.07.2019

Algae blooms regularly make for pretty, swirly satellite photos of lakes and oceans. They also make the news occasionally for poisoning fish, people and other animals. What's less frequently discussed is the outsize role they play in global carbon cycling. A recent study now reveals surprising facts about carbon flow in phytoplankton blooms. Unexpectedly few bacterial clades with a restricted set of genes are responsible for a major part of the degradation of algal sugars.

Algae take up carbon dioxide (CO2) from the atmosphere and turn the carbon into biomass while releasing the oxygen back to the atmosphere. Fast algal growth during phytoplankton blooms leads to a massive transfer of carbon dioxide into algal biomass. But what happens to the carbon next?


Heligoland is Germany’s only true offshore island, famous for its seabirds, seals and duty-free shopping rather than for algae. The MPI-scientists studied the fate of the organic matter.

Max Planck Institute for Marine Microbiology, Naomi Esken

“Once the algae die, the carbon is remineralized by microorganisms consuming their biomass. It is thus returned to the atmosphere as carbon dioxide. Alternatively, if the dead algae sink to the seafloor, the organic matter is buried in the sediment, potentially for a very long time”, explains first author Karen Krüger from the Max Planck Institute for Marine Microbiology in Bremen. “The processes behind the remineralization of algal carbon are still not fully understood.”

Thus, Krüger and her colleagues investigated microorganisms during spring algal blooms in the southern North Sea, at the island of Heligoland. They specifically looked at the bacterial use of polysaccharides – sugars that make up a substantial fraction of the algal biomass. Together with colleagues from the Max Planck Institute, the University of Greifswald and the DOE Joint Genome Institute in California, Krüger carried out a targeted metagenomic analysis of the Bacteroidetes phylum of bacteria, since these are known to consume lots of polysaccharides.

In detail, the scientists looked at gene clusters called polysaccharide utilisation loci (PULs), which have been found to be specific to a particular polysaccharide substrate. If a bacterium contains a specific PUL, that indicates it feeds on the corresponding algal sugar.

Low PUL diversity

“Contrary to what we expected, the diversity of important PULs was relatively low”, says Krüger. Only five major polysaccharide classes were being regularly targeted by multiple species of bacteria, namely beta-glucans (such as laminarin, the main diatom storage compound), alpha-glucans (such as starch and glycogen, also algal and bacterial storage compounds), mannans and xylans (typically algal cell wall components), and alginates (mostly known as slimy stuff produced by brown macroalgae).

Of these five substrates, only two (alpha- and beta-glucans) make up the majority of substrates available to the bacteria during a phytoplankton bloom. This implies that the most important polysaccharide substrates released by dying algae are made up of a fairly small set of basic components.

“Given what we know of algal and bacterial species diversity, and the enormous potential complexity of polysaccharides, it came as no small surprise to see such a limited spectrum of PULs, and in only a relatively small number bacterial clades”, co-author Ben Francis from the Max Planck Institute for Marine Microbiology sums up in an accompanying comment.

“This was especially unexpected because previous studies suggested something different. An analysis of more than 50 bacterial isolates – i.e. bacteria that can be cultured in the lab – that our working group carried out in the same sampling region revealed a much broader diversity of PULs”, he adds.

Temporal succession of polysaccharide degradation

During the course of the algal bloom, the scientists observed a distinct pattern: In early bloom stages, fewer and simpler polysaccharides dominated, while more complex polysaccharides became available as the bloom progressed. This might be caused by two factors, Francis explains: “First, bacteria will in general prefer easily degradable substrates such as simple storage glycans over biochemically more demanding ones. Second, more complex polysaccharides become increasingly available over a blooms’ course, when more and more algae die.”

This study provides unprecedented insights into the dynamics of a phytoplankton bloom and its protagonists. A fundamental understanding of the bulk of glycan-mediated carbon flow during phytoplankton bloom events is now within reach. “Next, we want to dig deeper into processes underlying the observed dynamics”, says Krüger. “Moreover, it will be interesting to investigate polysaccharide degradation in habitats with other carbon sources, such as the Arctic Seas or the sediment.”

Wissenschaftliche Ansprechpartner:

Thomas Ben Francis
Max Planck Institute for Marine Microbiology, Bremen, Germany
Phone: +49 421 2028-545
E-Mail: tfrancis@mpi-bremen.de

Prof. Dr. Rudolf Amann
Max Planck Institute for Marine Microbiology, Bremen, Germany
Phone: +49 421 2028-930
E-Mail: ramann@mpi-bremen.de

Dr. Fanni Aspetsberger
Press Officer
Max Planck Institute for Marine Microbiology,
Bremen, Germany
Phone: +49 421 2028-947
E-Mail: faspetsb@mpi-bremen.de

Originalpublikation:

Karen Krüger, Meghan Chafee, T. Ben Francis, Tijana Glavina del Rio, Dörte Becher, Thomas Schweder, Rudolf I. Amann, Hanno Teeling: In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. The ISME Journal. DOI: 10.1038/s41396-019-0476-y

Weitere Informationen:

https://www.mpi-bremen.de/en/Page3766.html
https://naturemicrobiologycommunity.nature.com/users/269126-ben-francis/posts/51...

Dr. Fanni Aspetsberger | Max-Planck-Institut für Marine Mikrobiologie

More articles from Life Sciences:

nachricht Detailed insight into stressed cells
05.12.2019 | Goethe-Universität Frankfurt am Main

nachricht State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing
05.12.2019 | Universität Ulm

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>