Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple twists of fate

30.09.2008
Brandeis researchers use advanced scientific techniques -- as well as binder clips and tape -- to reveal how gene regulation works

A novel Brandeis University study this week in PLoS Biology reports on some of the molecular gymnastics performed by a protein involved in regulating DNA transcription. Using state-of-the art tools, researchers observed the shape and behavior of individual DNA molecules bent into tight loops by Lac repressor, a protein from the bacterium E.coli that switches on and off individual genes.

The study brings scientists an important step closer to understanding the phenomenon of gene regulation, a process elemental to biology from maintaining cell stability in bacteria such as E. coli to helping facilitate the most complex processes of human development and disease. The research was carried out by former Brandeis Ph.D. student Oi Kwan Wong in collaboration with scientists from Wake Forest University and the University of North Carolina.

To switch some genes on or off, a protein has to bind to two different places on the gene simultaneously, creating a loop from the DNA. Although such loops are common, many of their features are poorly understood. Using atomic force microscopy and tethered particle motion (TPM), a technique pioneered at Brandeis, the researchers were able to look at single molecules of DNA to infer the shape of the loop, which is not visible. They discovered that many earlier models of loops were probably wrong because they required the DNA to bend and twist in ways incompatible with the behaviors the scientists observed in the single DNA molecules.

Atomic force microscopy enabled the researchers to view the shape of the DNA molecules, while TPM revealed the behavior of the DNA molecules. In the TPM experiments, a tiny plastic bead only a millionth of inch in diameter was attached to the end of a DNA molecule. By computer analysis of the bead movements seen in a microscope, the scientists were able to monitor the DNA as it looped and unlooped, revealing the details of the molecule's behavior.

But in addition to these sophisticated techniques, the researchers found a simple yet ingenious way to visualize just how the protein bent and twisted DNA: by creating three-dimensional models of the DNA loops using binder clips and tape. That simple trick helped the scientists determine which models were possible and which were unlikely.

"What we demonstrated in this paper is that, contrary to what many scientists thought, the structure of the protein is flexible and can take on different shapes, helping to minimize DNA bending or twisting in loops, and thus, maximize stable gene regulation," explained Wong's Ph.D. advisor, biochemistry professor Jeff Gelles. "We believe the protein has the ability to change its shape to accommodate different sized loops and different amounts of DNA, helping cells maintain genes in a switched on or switched off state."

"We think it is possible that the characteristics of this genetic switch are examples of a general phenomenon that helps explain gene regulation," said Gelles. Poor gene regulation is implicated in many diseases and cancers, and understanding how it works in even a simple bacterium may pave the way for the development of antibiotics.

"The key is that the protein can change shape "on the fly" to accommodate different kinds of loops, or different spacing between different parts of the DNA. This is the way that the protein may have evolved to make gene regulation more reliable," said Gelles.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

Further reports about: Brandeis DNA DNA molecules E.coli Regulation behavior loop molecular gymnastics single molecule technique twist

More articles from Life Sciences:

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

nachricht Removing toxic mercury from contaminated water
21.11.2018 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>