Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple twists of fate

30.09.2008
Brandeis researchers use advanced scientific techniques -- as well as binder clips and tape -- to reveal how gene regulation works

A novel Brandeis University study this week in PLoS Biology reports on some of the molecular gymnastics performed by a protein involved in regulating DNA transcription. Using state-of-the art tools, researchers observed the shape and behavior of individual DNA molecules bent into tight loops by Lac repressor, a protein from the bacterium E.coli that switches on and off individual genes.

The study brings scientists an important step closer to understanding the phenomenon of gene regulation, a process elemental to biology from maintaining cell stability in bacteria such as E. coli to helping facilitate the most complex processes of human development and disease. The research was carried out by former Brandeis Ph.D. student Oi Kwan Wong in collaboration with scientists from Wake Forest University and the University of North Carolina.

To switch some genes on or off, a protein has to bind to two different places on the gene simultaneously, creating a loop from the DNA. Although such loops are common, many of their features are poorly understood. Using atomic force microscopy and tethered particle motion (TPM), a technique pioneered at Brandeis, the researchers were able to look at single molecules of DNA to infer the shape of the loop, which is not visible. They discovered that many earlier models of loops were probably wrong because they required the DNA to bend and twist in ways incompatible with the behaviors the scientists observed in the single DNA molecules.

Atomic force microscopy enabled the researchers to view the shape of the DNA molecules, while TPM revealed the behavior of the DNA molecules. In the TPM experiments, a tiny plastic bead only a millionth of inch in diameter was attached to the end of a DNA molecule. By computer analysis of the bead movements seen in a microscope, the scientists were able to monitor the DNA as it looped and unlooped, revealing the details of the molecule's behavior.

But in addition to these sophisticated techniques, the researchers found a simple yet ingenious way to visualize just how the protein bent and twisted DNA: by creating three-dimensional models of the DNA loops using binder clips and tape. That simple trick helped the scientists determine which models were possible and which were unlikely.

"What we demonstrated in this paper is that, contrary to what many scientists thought, the structure of the protein is flexible and can take on different shapes, helping to minimize DNA bending or twisting in loops, and thus, maximize stable gene regulation," explained Wong's Ph.D. advisor, biochemistry professor Jeff Gelles. "We believe the protein has the ability to change its shape to accommodate different sized loops and different amounts of DNA, helping cells maintain genes in a switched on or switched off state."

"We think it is possible that the characteristics of this genetic switch are examples of a general phenomenon that helps explain gene regulation," said Gelles. Poor gene regulation is implicated in many diseases and cancers, and understanding how it works in even a simple bacterium may pave the way for the development of antibiotics.

"The key is that the protein can change shape "on the fly" to accommodate different kinds of loops, or different spacing between different parts of the DNA. This is the way that the protein may have evolved to make gene regulation more reliable," said Gelles.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

Further reports about: Brandeis DNA DNA molecules E.coli Regulation behavior loop molecular gymnastics single molecule technique twist

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>