Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silencing of jumping genes in pollen

09.02.2009
Portuguese scientists' contribution crucial to new study to be published in Cell

Scientists at the Instituto Gulbenkian de Ciência (IGC), in Portugal, are to date the only research group in the world capable of isolating the sperm cells in the pollen grain of the model plant Arabidopsis thaliana.

This technique was crucial in a study to be published in the latest issue of the journal Cell, which describes how mobile sequences of DNA (called transposable elements) are silenced in the sperm cells, thus ensuring suppression of the mutagenic effects of these DNA elements.

Jörg Becker, José Feijó and their team, at the IGC, and Robert Martienssen and colleagues, at the Cold Spring Harbor Laboratory, CSHL,in the USA, have unveiled a mechanism for controlling transposable elements that appears to be extensible to other eukaryotes, such as the fruit fly, amoebae and algae.

Transposable elements are very common in all known genomes. In the human genome, for example, they make up 45% of the total genome. They are involved in the evolution of genomes, since when integrated back into the genome they can affect the function and organisation of other genes. However, transposable elements are mutagens, and, therefore, their activation needs to be under tight control, as it may be harmful to the cell and the organism. If such harmful mutations occur in sexual cells, they will be transmitted to the progeny and spread in the population.

Keith Slotkin of the Martienssen lab made the surprising observation that, unlike other cells in the adult plant, transposable elements are highly active in the pollen grain of Arabidopsis thaliana. Pollen grains contain two sperm cells (the sexual cells) and an accompanying vegetative nucleus, whose DNA is not passed on to the next generation. Thanks to the technique developed by Jörg Becker's team, the researchers were able to pinpoint the location of the transposable elements' activity to the vegetative nucleus.

The researchers wanted to understand why the transposable elements weren't activated in the sperm cells. Using the sperm cell sorting technique developed at the IGC, they found that small interfering RNA's (siRNAs) accumulate in the neighbouring sperm cells, where they supposedly target the transposable elements and lead to their silencing, thus preventing the deleterious effects that their activation could have in ensuing plant development.

Says Jörg Becker, 'Overcoming the hurdles in optimising the technique was only possible because at the IGC groups researching pollen development work side-by-side with others developing cell-sorter techniques for lymphocytes. We are now able to look at the activation pattern of genes in sperm cells and are gathering surprising findings that these cells are genetically more active than previously thought. This pattern is now gradually being dissected to try to unravel the role of the genes activated in sperm cell in development of the sperm cells themselves and potentially even in the development of the embryo after fertilization.

This study suggests that also in other eukaryotic organisms which have companion cells to the sexual cells, this mechanism of silencing of transposable elements via siRNA synthesis in adjacent nuclei to the ones that carry hereditary genetic information may be acting.

Ana Godinho | EurekAlert!
Further information:
http://www.gulbenkian.pt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>