Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signaling Molecule Identified as Essential for Maintaining a Balanced Immune Response

26.07.2011
St. Jude Children’s Research Hospital scientists show that the molecule serves as a bridge between the two arms of the immune system that provides a new mechanism guiding T cell differentiation

St. Jude Children’s Research Hospital investigators have identified a signaling molecule that functions like a factory supervisor to ensure that the right mix of specialized T cells is available to fight infections and guard against autoimmune disease.

The research also showed the molecule, phosphatase MKP-1, is an important regulator of immune balance. Working in laboratory cell lines and mice with specially engineered immune systems, scientists demonstrated that MKP-1 serves as a bridge between the innate immune response that is the body’s first line of defense against infection and the more specialized adaptive immune response that follows. The results are published in the July 22 print edition of the scientific journal Immunity.

The results raise hopes that the MKP-1 pathway will lead to new tools for shaping the immune response, said Hongbo Chi, Ph.D., assistant member of the St. Jude Department of Immunology and the study’s senior author. The co-first authors are Gonghua Huang, Ph.D., and Yanyan Wang, Ph.D., both postdoctoral fellows in Chi’s laboratory.

The findings provide new details about how dendritic cells regulate the fate of naïve or undifferentiated T cells. Dendritic cells are the sentinels of the innate immune response, patrolling the body and ready to respond at the first sign of infection.

Investigators were surprised that a single molecule regulated production of three out of the four major subsets of T cells, which each play different roles. MKP-1 is a negative regulator of the enzyme p38, which is part of the MAP kinase family of enzymes that control pathways involved in cell proliferation, differentiation and death.

Chi and his colleagues demonstrated that MKP-1 works in dendritic cells by altering production of protein messengers known as cytokines. Those cytokines determine which subset of specialized T cells the undifferentiated T cells are fated to become. In this study, scientists showed that MKP1 controls production of the cytokines that yield T helper 1 (Th1), T helper 17 (Th17) and regulatory T (Treg) cells. Th1 cells combat intracellular bacterial and viral infections. Th17 cells fight extracellular bacterial infections and fungi. Treg cells help with immune suppression, protecting against autoimmune diseases.

The study showed that suppression of p38 by MKP-1 promotes production of interleukin 12 (IL-12), which leads to an increase in Th1 cells. Rising IL-12 coincides with a drop in interleukin 6 (IL-6) and a corresponding dip in production of Th17. MKP-1 also inhibited the generation of Treg cells by down-regulating production of a third cytokine, TGF-beta.

Knocking out MKP-1 in mice disrupted production of IL-12 and IL-6 in dendritic cells as well as the anti-bacterial and anti-fungal immune response, researchers reported. MKP-1 deficiency also promoted T-cell driven inflammation in a mouse model of colitis, an inflammatory disease.

“MKP-1 is the first signaling molecule found in dendritic cells to program differentiation of these diverse T- cell subsets,” Chi said.

Previous work by other scientists focused on T cell differentiation in response to stimulation by cytokines. “This research fills a gap in our understanding of dendritic cell-mediated control of T-cell lineage choices,” Chi said. “T cells do not recognize pathogens directly, but dendritic cells do. T cells need dendritic cells to tell them what to do. In this study, we show that MKP-1 signaling in dendritic cells bridges the innate and adaptive immune responses by regulating cytokine production.”

Other authors are Lewis Shi and Thirumala-Devi Kanneganti, both of St. Jude.

The research was supported in part by the National Institutes of Health, the National Multiple Sclerosis Society, the Cancer Research Institute, The Hartwell Foundation and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other catastrophic diseases. Ranked one of the best pediatric cancer hospitals in the country, St. Jude is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children. St. Jude has treated children from all 50 states and from around the world, serving as a trusted resource for physicians and researchers. St. Jude has developed research protocols that helped push overall survival rates for childhood cancer from less than 20 percent when the hospital opened to almost 80 percent today. St. Jude is the national coordinating center for the Pediatric Brain Tumor Consortium and the Childhood Cancer Survivor Study. In addition to pediatric cancer research, St. Jude is also a leader in sickle cell disease research and is a globally prominent research center for influenza.

Founded in 1962 by the late entertainer Danny Thomas, St. Jude freely shares its discoveries with scientific and medical communities around the world, publishing more research articles than any other pediatric cancer research center in the United States. St. Jude treats more than 5,700 patients each year and is the only pediatric cancer research center where families never pay for treatment not covered by insurance. St. Jude is financially supported by thousands of individual donors, organizations and corporations without which the hospital’s work would not be possible. For more information, go to www.stjude.org.

Summer Freeman | Newswise Science News
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>