Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Signal Molecules for the Formation of Various Cell Types Are Controlled

03.12.2012
Researchers study influence of chemically produced variants of natural indirubin

The regulation of important signal molecules that are critical for the formation of various cell types can be influenced by a chemically produced variant of indirubin, a natural material used in traditional Chinese medicine. This was shown by scientists from Heidelberg University, Kaiserslautern and Jena.

The researchers were also able to demonstrate for the first time that these signal molecules in the cell – regulatory SMAD proteins – are not only controlled through regulation of their activation but also through the available quantity of signal molecules in the non-activated state. Because cellular differentiation as well as tumour growth are tied to these processes, the studies suggest a new approach for both the preparation of induced pluripotent stem cells and the development of tumour treatments. The results of the research were published in the journal “Chemistry & Biology”.

Cellular differentiation decides which functions can be assumed and carried out by cells in the body. Their precise regulation has a decisive influence on embryonic development and later also plays an essential role in maintaining the activity of organs. After toxic damage, among other things, it is important that cells can react appropriately to limit damage and regenerate the tissue. This requires close communication between the cells, which is controlled by numerous signal molecules. “Only when all the parts of a signal path are present, cells can react to the signals from the environment with a coordinated programme. If one of these components is missing, the proper cellular response is inhibited”, explains Prof. Dr. Stefan Wölfl from Heidelberg University's Institute of Pharmacy and Molecular Biotechnology.

How cellular differentiation is controlled during embryonic development and in the mature organism significantly depends on the family of TGFß/BMP growth factors. Representatives of these specific signal molecules also participate in the genesis and development of tumour diseases. Through their work, the researchers have demonstrated that the cells themselves influence how sensitively they react to growth factor signals. This occurs through the availability of the complementary signal mediators within the cell adapting to the given situation. The amount of available regulatory SMAD proteins (R-Smad proteins) in the cell is controlled on the level of synthesis, but in particular through the control of their degradation. This is performed by a special control system present in every cell. This ubiquitin proteasome system makes it possible for cellular proteins to be degraded in a controlled manner.
Earlier research already demonstrated that the degradation of activated R-Smad proteins occurs through the ubiquitin proteasome system, resulting in termination of the signals. “Our results now prove that the reservoir of non-activated R-SMAD signal mediators is also strictly controlled. This prevents corresponding external signals from activating an internal programme”, says Prof. Wölfl. “For example, if growing tumour cells are dependent on this signal, these cells could be kept from surviving and cell death may even occur if the signal mediators could be deliberately removed.” According to Prof. Wölfl, R-Smad proteins are also important mediators in cellular differentiation. “Reducing or removing these signal mediators from stem cells would cause them to no longer react to differentiation signals, so they would retain their stem cell properties as a result.”

In their experiments, the researchers worked with a variant of the natural product indirubin that they chemically synthesised. The studies showed that the indirubin derivative led to a degradation of the R-Smad proteins in human cells. Thus, the signals transmitted by the TGFß/BMP growth factors are blocked. In this procedure, the indirubin variant intervenes in various processes that all contribute to depleting the concentration of R-Smad proteins in the cell. In particular, the activity of specific regulating enzymes called ubiquitin proteases is diminished, which protect proteins from degradation in the ubiquitin proteasome system.

The research was funded by the Federal Ministry of Education and Research (BMBF) within a joint research project focussed on medical system biology. The research team at the Institute of Pharmacy and Molecular Biotechnology of Heidelberg University collaborated with scientists from the University of Kaiserslautern and the Jena University Hospital as well as the Heidelberg University Hospital’s Institute of Human Genetics.

Original publication:
X. Cheng, H. Alborzinia, K.H. Merz, H. Steinbeisser, R. Mrowka, C. Scholl, I. Kitanovic, G. Eisenbrand, S. Wölfl: Indirubin Derivatives Modulate TGFβ/BMP Signaling at Different Levels and Trigger Ubiquitin-Mediated Depletion of Nonactivated R-Smads, Chemistry & Biology, Volume 19, Issue 11, 21 November 2012, Pages 1423-1436, doi: 10.1016/j.chembiol.2012.09.008

Contact:
Prof. Dr. Stefan Wölfl
Institute of Pharmacy and Molecular Biotechnology
Phone: +49 (0)6221 54-4878, wolfl@uni-hd.de

Communications and Marketing
Press Office, phone: +49 (0)6221 54-2311
press@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>