Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding light on the reaction mechanism of PUVA light therapy for skin diseases

21.08.2019

Chemistry: publication in the Journal of the American Chemical Society

Together with their Munich-based colleagues, a team of physical chemists from Heinrich Heine University Düsseldorf (HHU) has clarified which chemical reactions take place during PUVA therapy. The therapy involves light-induced damage to the DNA of diseased cells.


Reaction stages when a psoralen molecule binds to DNA. Result: the psoralen is permanently bound to the DNA via a cyclobutane ring. The cell is thus damaged, and triggers the programmed cell death.

ACS / Janina Diekmann

The team working under Prof. Dr. Peter Gilch has now published its findings in the Journal of the American Chemical Society.

The term ‘PUVA’ stands for ‘psoralen’ and ‘UV-A radiation’. Psoralens are natural plant-based compounds that can be extracted from umbelliferous plants such as giant hogweeds. Plant extracts containing psoralens were already used in Ancient Egypt for the treatment of skin diseases.

Modern medical use began in the 1950s. From then on, they were applied for light-dependent treatment of skin diseases such as psoriasis and vitiligo. From the 1970s onwards, PUVA therapy was used to treat a type of skin cancer known as cutaneous T-cell lymphoma.

Psoralens insert between the crucial building blocks (bases) of DNA, the hereditary molecule. When subjected to UV radiation, they bind to thymine – a specific DNA base – and thus cause irreversible damage to the hereditary molecule. This in turn triggers programmed cell death, ultimately destroying the diseased cell.

Researchers working with Prof. Dr. Peter Gilch from HHU’s Institute of Physical Chemistry have now collaborated with Prof. Dr. Wolfgang Zinth’s work group from LMU Munich to analyse the precise mechanism of this binding reaction. They used time-resolved laser spectroscopy for this purpose.

They found that – after the psoralen molecule has absorbed UV light – the reaction takes place in two stages. First, a single bond between the psoralen molecule and thymine forms. A second bond formation then yields a four-membered ring (cyclobutane) permanently connecting the two moieties (see figure).

The researchers in Düsseldorf and Munich were also able to demonstrate that the first stage takes place within a microsecond, while the second needs around 50 microseconds. They compared this process with the damaging of the ‘naked’ DNA by UV light. That process also frequently results in cyclobutane rings, but the process takes place considerably faster than when psoralens are present.

Prof. Gilch explains the background to the research: “If we can understand how the reactions take place in detail, we can change the psoralens chemically in a targeted way to make PUVA therapy even more effective.” Together with his colleague in organic chemistry, Prof. Dr. Thomas Müller, he wants to develop these high-performance psoralen molecules at HHU within the scope of a DFG project.

Originalpublikation:

Janina Diekmann, Julia Gontcharov, Sascha Fröbel, Christian Torres Ziegenbein, Wolfgang Zinth, Peter Gilch, The Photoaddition of a Psoralen to DNA proceeds via the Triplet State, Journal of the American Chemical Society, 2019
DOI: 10.1021/jacs.9b06521

Weitere Informationen:

https://pubs.acs.org/doi/10.1021/jacs.9b06521

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Further information:
http://www.hhu.de/

Further reports about: DNA UV light diseased cells light therapy programmed cell death skin thymine

More articles from Life Sciences:

nachricht New tool improves beekeepers' overwintering odds and bottom line
19.09.2019 | US Department of Agriculture - Agricultural Research Service

nachricht Elusive compounds of greenhouse gas isolated by Warwick chemists
18.09.2019 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

UMD-led study captures six galaxies undergoing sudden, dramatic transitions

19.09.2019 | Physics and Astronomy

Study points to new drug target in fight against cancer

19.09.2019 | Health and Medicine

New tool improves beekeepers' overwintering odds and bottom line

19.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>