Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding light on the brown color of algae

14.07.2020

Researchers clarify the initial phase of biosynthesis of a photosynthetic pigment that predominates in the world's oceans

For many people algae are just an odorous nuisance on their vacation beach or unwelcome guests in the garden pond and aquarium.


The brown coloration of diatoms and dinoflagellates is due to the presence of the light-harvesting carotenoids fucoxanthin and peridinin respectively, which transfer the absorbed light energy to chlorophylls for photosynthesis.

photo/©: Martin Lohr

This does not take into account, however, the enormous effects these mostly microscopic aquatic inhabitants have on the global climate and does not pay due heed to their role as nutrition for the fish of the oceans.

Marine algae convert roughly the same amount of carbon dioxide into biomass per year by photosynthesis as all land plants combined. This algal biomass forms the ultimate base of the food chain that feeds other organisms in aquatic ecosystems.

To harness the energy of sunlight for photosynthesis, plants must first absorb the light using so-called light-harvesting pigments. Terrestrial plants do this mainly by means of chlorophylls, which lend the leaves their typical green color. But unlike green terrestrial plants, many algae have a brownish color.

The pigments responsible for this belong to a group of substances called carotenoids, which are also involved in the process of vision in the human eye. These carotenoids enable algae to collect the often predominant green light under water with greater efficiency, thus gathering more energy for photosynthesis and the production of biomass.

Fucoxanthin, the light-harvesting pigment employed by the majority of marine algae, is one of the world's most abundant carotenoids, but researchers still do not know how algae synthesize this molecule.

First stage of fucoxanthin biosynthesis identified

Working in collaboration with colleagues from the University of California, Berkeley, researchers at the Department of Biology of Johannes Gutenberg University Mainz (JGU) have now managed to unveil the first stage of fucoxanthin biosynthesis. Interestingly, the enzyme responsible is closely related to one that has already been extensively studied, i.e., violaxanthin de-epoxidase.

Violaxanthin de-epoxidase is present in land plants and most algae and triggers the formation of photoprotective carotenoids during high light stress. "I think we can safely assume that carotenoids in organisms that use photosynthesis originally served only as pigments that were designed to protect against harmful effects of light," said Dr. Martin Lohr, the head of the research project.

"Our work shows that algae duplicated individual tools from the toolbox of enzymes required for the formation of these carotenoids and then developed a new function for one of the copies. This has allowed them to evolve more complex pigments with modified absorption properties, which are particularly effective as light-harvesting pigments."

More than ten years ago, Dr. Martin Lohr's research group had discovered the first evidence of the enzymatic function of a then new form of these enzymes, called violaxanthin de-epoxidase-like (VDL) protein, which occurs exclusively in algae. But it was only after the study's coauthor, Dr. Oliver Dautermann, had established techniques for investigating the VDL function by introducing the enzyme into tobacco leaves that Lohr and his team would be able to compare the characteristics of VDL proteins from various algae.

Their findings confirmed the key role of VDL as an enzyme in the biosynthesis of fucoxanthin and other algal light-harvesting carotenoids, such as peridinin in dinoflagellates. As yet, however, they had still not been able to demonstrate that VDL did indeed have the catalytic function in algae that it showed in tobacco plants.

Two postdocs in the team of Professor Kris Niyogi at the University of California, Berkeley, eventually provided the conclusive evidence by isolating an alga with a defective VDL gene. Pigment analyses from both laboratories confirmed that the carotenoid biosynthesis in this algal mutant was interrupted at the stage involving the pigment violaxanthin.

It is still too early to say whether the ability to form fucoxanthin could ever be transferred to agricultural crops and whether this would actually result in increased yields. Recent investigations undertaken by Lohr's team in cooperation with other American partners suggest that the pathway of fucoxanthin biosynthesis in many algae is more complicated than previously thought. Thus, for the time being, green will continue to prevail as the leaf color of land-based plants.

Images:
https://download.uni-mainz.de/presse/10_imp_pflanzen_algen_enzym_01.jpg
The brown coloration of many algae is caused by the presence of specialized photosynthetic carotenoids.
photo/©: Martin Lohr

https://download.uni-mainz.de/presse/10_imp_pflanzen_algen_enzym_02.jpg
The brown coloration of diatoms and dinoflagellates is due to the presence of the light-harvesting carotenoids fucoxanthin and peridinin respectively, which transfer the absorbed light energy to chlorophylls for photosynthesis.
photo/©: Martin Lohr

https://download.uni-mainz.de/presse/10_imp_pflanzen_algen_enzym_03.jpg
Two cells of the diatom Phaeodactylum tricornutum, the plastids of which are clearly apparent thanks to the red fluorescent light emitted by the photosynthetic pigments (chlorophylls) they contain.
photo/©: Christof Rickert and Martin Lohr

Wissenschaftliche Ansprechpartner:

Dr. Martin Lohr
Molecular Plant Science / Plant biochemistry
Institute of Molecular Physiology (IMP)
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-24201
e-mail: lohr@uni-mainz.de
https://www.blogs.uni-mainz.de/fb10-plant-biochemistry/ag-lohr-algal-pigments/

Originalpublikation:

O. Dautermann et al., An algal enzyme required for biosynthesis of the most abundant marine carotenoids, Science Advances, 4. March 2020,
DOI: 10.1126/sciadv.aaw9183
https://advances.sciencemag.org/content/6/10/eaaw9183.full

Kathrin Voigt | idw
Further information:
https://www.uni-mainz.de/presse/aktuell/11675_ENG_HTML.php

More articles from Life Sciences:

nachricht Study clarifies kinship of important plant group
05.08.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Human cell-based test systems for toxicity studies: Ready-to-use Toxicity Assay (hiPSC)
05.08.2020 | Fraunhofer-Institut für Biomedizinische Technik IBMT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>