Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharpening the focus of microscopes

05.12.2011
Based on non-linear optical effects, imaging with light has reached atomic precision in the most precise microscope ever built.

A new advanced imaging scheme—with a resolution ten times better than that of its counterparts to date—can resolve objects as small as atoms1. Previously, the maximum resolution of optical instruments, including cameras and microscopes, was fundamentally limited to a precision that corresponded to approximately half of the wavelength of incoming light.


Figure 1: The optical response of a diamond crystal (left) can now be analyzed at the atomic scale with extreme ultraviolet light (center). This technique can provide additional information to the crystal structure (right) typically obtained using x-rays
Copyright : 2011 Kenji Tamasaku

The new scheme, developed by researchers from the RIKEN SPring-8 Center in Harima and Nagoya University, has a resolution up to 380 times better than the UV light used in the experiments. For microscopes using visible light, which means wavelengths of a few hundred nanometers, the best achievable resolution is around 100 nanometers, which fails to resolve the smallest structures on a computer chip. Imaging smaller nanostructures, or even atoms, requires light of much shorter wavelengths, such as x-rays that are difficult to handle, and which provide different types of images to those captured using visible light.

Led by Kenji Tamasaku of RIKEN, the researchers used a non-linear optical effect to achieve atomic resolution in diamond. Their process is based on the intrinsic interaction between the electrons of the material’s crystal atoms and UV light that splits an incoming x-ray beam into a UV beam and a lower energy x-ray beam. The combined energy of these scattered beams is the same as that of the incoming beam. This process depends strongly on the activation of the UV beam, which occurs only in the vicinity of the electrons in the atoms, and only if the optical response of the electrons is a match to the incoming x-ray beam, Tamasaku explains.

Analyzing the scattered beams allowed a precise reconstruction of the motion of the electrons under UV illumination. Using a diamond crystal as an imaging object, the researchers demonstrated a resolution of 0.054 nanometers (Fig. 1). Because Tamasaku and colleagues used a non-linear optical effect, they obtained new information not only about how electrons move but also about atomic position.

There are many possibilities for using this new method, says Tamasaku. “This technique is very useful for the study of the physical properties of materials that couple to light.” An example is the study of electronic materials, in which the sensitivity of the technique to the electron’s electronic states can be used to probe electrical charges in materials such as high-temperature superconductors. Using the team's new approach, this will now be possible with atomic resolution.

The corresponding author for this highlight is based at the Coherent X-Ray Optics Laboratory, RIKEN SPring-8 Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Sensory Perception Is Not a One-Way Street
17.10.2018 | Eberhard Karls Universität Tübingen

nachricht Sex or food? Decision-making in single-cell organisms
17.10.2018 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>