Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SFU researchers test sugary solution to Alzheimer’s

29.02.2012
Slowing or preventing the development of Alzheimer’s disease, a fatal brain condition expected to hit one in 85 people globally by 2050, may be as simple as ensuring a brain protein’s sugar levels are maintained.
That’s the conclusion seven researchers, including David Vocadlo, a Simon Fraser University chemistry professor and Canada Research Chair in Chemical Glycobiology, make in the latest issue of Nature Chemical Biology.

The journal has published the researchers’ latest paper Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation.

Vocadlo and his colleagues describe how they’ve used an inhibitor they’ve chemically created — Thiamet-G — to stop O-GlcNAcase, a naturally occurring enzyme, from depleting the protein Tau of sugar molecules.

“The general thinking in science,” says Vocadlo, “is that Tau stabilizes structures in the brain called microtubules. They are kind of like highways inside cells that allow cells to move things around.”

Previous research has shown that the linkage of these sugar molecules to proteins, like Tau, in cells is essential. In fact, says Vocadlo, researchers have tried but failed to rear mice that don’t have these sugar molecules attached to proteins.

Vocadlo, an accomplished chess player in his spare time, is having great success checkmating troublesome enzymes with inhibitors he and his students are creating in the SFU chemistry department’s Laboratory of Chemical Glycobiology.

Research prior to Vocadlo’s has shown that clumps of Tau from an Alzheimer brain have almost none of this sugar attached to them, and O-GlcNAcase is the enzyme that is robbing them.

Such clumping is an early event in the development of Alzheimer’s and the number of clumps correlate with the disease’s severity.

Scott Yuzwa and Xiaoyang Shan, grad students in Vocadlo’s lab, found that Thiamet-G blocks O-GlcNAcase from removing sugars off Tau in mice that drank water with a daily dose of the inhibitor. Yuzwa and Shan are co-first authors on this paper.

The research team found that mice given the inhibitor had fewer clumps of Tau and maintained healthier brains.

“This work shows targeting the enzyme O-GlcNAcase with inhibitors is a new potential approach to treating Alzheimer’s,” says Vocadlo. “This is vital since to date there are no treatments to slow its progression.

“A lot of effort is needed to tackle this disease and different approaches should be pursued to maximize the chance of successfully fighting it. In the short term, we need to develop better inhibitors of the enzyme and test them in mice. Once we have better inhibitors, they can be clinically tested.

Carol Thorbes (SFUPAMR) | EurekAlert!
Further information:
http://www.sfu.ca

Further reports about: Alzheimer Glycobiology O-GlcNAcase SFU Tau-Protein Thiamet-G sugar molecules

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>