Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sex life of killer fungus finally revealed

01.12.2008
Biologists at The University of Nottingham and University College Dublin have announced a major breakthrough in our understanding of the sex life of a microscopic fungus which is a major cause of death in immune deficient patients and also a cause of severe asthma.

The discovery of a sexual cycle in the fungal pathogen Aspergillus fumigatus is highly significant in understanding the biology and evolution of the species and will shed new light on its ability to adapt to new environments and its resistance to antifungal drugs. It is hoped the results of this research will lead to new ways of controlling this deadly disease and improved treatments for patients infected with it.

First described 145 years ago this killer fungus, until now, had no known sexual cycle and was only thought to reproduce by production of asexual spores. But researchers from the School of Biology at The University of Nottingham and from University College Dublin, have finally been able to induce sexual reproduction in this potentially lethal pathogen showing, for the first time, that A. fumigatus possesses a fully functional sexual reproductive cycle.

Dr Paul Dyer is an expert in the sexual development and population variation of fungi and co-author of ‘Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus’, which will be published in Nature on 30 November 2008.

Dr Dyer said: “This discovery is significant for providing both good and bad news. The bad news is that we now know that Aspergillus fumigatus can reproduce sexually, meaning that it is more likely to become resistant to antifungal drugs in a shorter period, and the sexual spores are better at surviving harsh environmental conditions. The good news is that we can use the newly discovered sexual cycle as a valuable tool in laboratory experiments to try to work out how the fungus causes disease and triggers asthmatic reactions. Once we understand the genetic basis of disease we can then look forward to devising methods to control and overcome the fungus”.

The spores of A. fumigatus, which feeds on dead or decaying organic matter, are widespread in the atmosphere. It has been estimated that everybody inhales around 200 spores each day. These spores are normally eliminated by the innate immune response. However, this fungus has become the most prevalent airborne fungal pathogen due to its ability to cause infections in hosts with a weakened immune system, with at least a 50 per cent mortality rate in humans. Four per cent of patients in modern European teaching hospitals have invasive aspergillosis; it is the leading infectious cause of death in leukaemia and bone marrow transplant patients. The fungus is also associated with severe asthma and sinusitis.

Almost one-fifth of all fungi have no known sexual stage — these include many Aspergillus, Penicillium, Coccidioides and Malassezia species which are of major economic and medical importance. However, some of these species have apparently functional sex related genes and this research could lead to a sexual revolution for many other of these supposed ‘asexuals’.

The research was carried out in collaboration with Dr Hubert Fuller and his final year PhD student Céline O’Gorman from the UCD School of Biology and Environmental Science at University College Dublin. The study was funded by an IRCSET Postgraduate Research Scholarship, an EC Marie Curie Training Fellowship and a grant from the British Mycological Society, which facilitated research visits by Céline O’Gorman to The University of Nottingham.

Many fungi reproduce by sexual means. The molecular-genetic and physiological mechanisms controlling sex in fungi are being investigated at The University of Nottingham with the aim of devising new methods for the control of fungal diseases and promoting sex in beneficial species. The consequences of sex for genetic variation and evolution are being studied in model species of fungi including plant pathogens and Antarctic lichen-forming fungi.

Lindsay Brooke | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>