Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sertoli cells show promise for therapeutics

12.07.2011
Two papers published in the current issue of Cell Transplantation (20:5), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/, highlight the therapeutic potential of human Sertoli cells that are present in the testes and are also called "nurse" or "mother" cells because they nurture the developing sperm cells.

Sertoli cells form the blood-testes barrier that separates the blood compartment of the testes from the compartment of the seminiferous tubules. Once differentiated to form the blood-testes barrier, Sertoli cells do not proliferate, although recent research has been aimed at growing Sertoli cells outside of the body.

Determining Sertoli cell functionality in vitro

A team of U.S. and Argentina-based researchers reporting on isolating and characterizing Sertoli cells from deceased human organ/tissue donors report on techniques by which Sertoli cells "proliferated readily" in vitro under "optimized conditions" with a four day "doubling time."

"Since there is interest in using Sertoli cells to minimize transplant rejection due to their immunological suppressive properties, establishing conditions to produce proliferative human Sertoli cells in vitro could facilitate research on their use for therapeutic applications in cell or organ transplantation," said study corresponding author Dr. Constance M. John of San Francisco-based MandalMed, Inc. "In this study we aimed to isolate and expand primary adult human Sertoli cells from cadaveric testes and characterize them to determine their functionality in vitro."

The researchers found that expanded, cryopreserved Sertoli cells could retain their characteristic markers and exhibited prototype functionality to establish a tight junction barrier.

"The cells provided evidence of potential utility in spermatogenesis and infertility research and reproductive toxicology," concluded the researchers. "Because of their robust proliferative activity and unique biological role, the primary Sertoli cells could have cell therapy applications."

Contact: Dr. Constance M. John, MandalMed, Inc. 665 3rd St. Suite 250,
San Francisco, CA 94107
Tel. (415) 495-5570
Fax. (415) 495- 5575
Email: constancejohn@mandalmed.com
Citation: Chui, K. ; Trivedi, A. ; Cheng, C. Y.; Cherbavaz, D. B.; Dazin, P. F. ; Huynh, A. L. T.; Mitchell, J. B.; Rabinovich, G. A.; Noble-Haeusslein, L. J.; John, C. M. Characterization and Functionality of Proliferative Human Sertoli Cells. Cell Transplant. 20(5):619-635;_2011.

Sertoli cells successfully deliver therapeutics deep into the lung

In a study seeking a better way to get medication to lower lung areas, such as to the alveoli and other areas difficult to reach and in which to retain therapeutics, University of South Florida (USF) researchers report that rat Sertoli cells loaded with chitosan nanoparticles and coupled with an anti-inflammatory compound, injected into the tails of mice with deep inflammation, reached the deep areas of the lung quickly and stayed active.

Current lung therapy techniques, such as aerosols, nebulizer mists, Metered Dose Inhalers and other means have proven largely ineffective because of airway obstructions, mucus, and airway edema that often prevent inhaled delivery. Even when these therapeutics are delivered effectively, they are often quickly expelled during exhalation and the drug is not in the lung long enough for sustained release.

"A novel way to deliver nanoparticles coupled with drugs to the deep lung is to utilize a bio-compatible cell-based system and deliver therapy through the peripheral vasculature instead of a pulmonary route," said corresponding author Dr. Donald F. Cameron of the University of South Florida (USF) Department of Pathology and Cell Biology.

The USF study tested the delivery of an anti-inflammatory compound to the deep lungs of animals modeled with pulmonary inflammation and found a "high therapeutic effect" 24 hours after drug delivery.

"The drug-loaded Sertoli cells became entrapped in the host animal's deep lung and was distributed around the alveoli while intact Sertoli cells were not detected in other tissues or organs," said Dr. Cameron. "At 15 minutes post injection, 92 percent of the labeled nanoparticle load in the injected Sertoli cells were present in the lungs with a minimal amount detected in the liver and kidney."

The researchers concluded that the use of pre-loaded Sertoli cells to deliver therapeutic nanoparticles to the lungs through the peripheral vasculature and subsequently migrated to the pulmonary vasculature, potentially providing an effective therapeutic alternative to current methodologies that have been proven less effective.

"These two studies describe a set of conditions for expanding human sertoli cells in vitro from deceased organ/tissue donors and a potential use for the cells (this time taken from rats)" said Dr. Camillo Ricordi, coeditor-in-chief of Cell Transplantation and Director of the Cell Transplant Center and Diabetes Research Institute at the University of Miami. "While the second paper covers the potential use of sertoli cells as vectors for the delivery of specific factors to the deep areas of the lung, these cells may also be beneficial as delivery systems for other disorders. This will require further investigation."

Contact: Dr. D.F. Cameron, MDC 11, Department of Pathology & Cell Biology, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. Tampa, FL 33612
Tel. (813) 974-9434
Fax. (813) 974-2058
Citation: Kumar, A.; Glam, M.; El-Badri, N.; Mohapatra, S.; Haller, E.; Park, S.; Patrick, L.; Nattkemper, L.; Vo, D.; Cameron, D. F. Initial Observations of Cell-Mediated Drug Delivery to the Deep Lung. Cell Transplant. 20(5):609-618; 2011.

The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News release by Randolph Fillmore, Florida Science Communications, www.sciencescribe.net

David Eve | EurekAlert!
Further information:
http://www.sciencescribe.net

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>