Sequencing tracks animal-to-human transmission of bacterial pathogens

The results, which are published today in EMBO Molecular Medicine, confirm animal-to-human transmission of methicillin-resistant Staphylococcus aureus (MRSA), a disease-causing bacterium that carries the recently described mecC gene. The mecC gene is responsible for resistance to the penicillin-like antibiotic methicillin.

Drug-resistant bacterial infections pose a significant challenge to public health and may have severe and sometimes fatal consequences. As the costs of whole genome sequencing methods continue to plummet and the speed of analysis increases, it becomes increasingly attractive for scientists to use whole genome sequencing to answer disease-related questions.

“We used whole genome sequencing to see if we could determine if the two disease outbreaks were caused by the same bacterium and to investigate if the pathogens were transmitted from animal to humans or the other way around,” remarked Mark Holmes, from the University of Cambridge and the senior author on the paper. “At first glance, it seems reasonable to expect the same pathogen to be the source of the two outbreaks at the two geographically close locations.
By looking at the single differences in nucleotides or SNPs in the DNA sequences of each isolate, it became obvious that two different strains of bacteria were responsible for the two disease outbreaks. In one case, the results also clearly showed that the most likely direction of transmission was from animal to human.”

Methicillin-resistant S. aureus can lead to debilitating skin and soft tissue infec-tions, bacteremia, pneumonia and endocarditis. The researchers used an Illumina HiSeq sequencing system to take a close look at the nucleotide sequence of each pathogen. By comparing single differences in nucleotides in the two sequences (single nucleotide polymorphisms) they were able to reach conclusions about the identity of the pathogens and the routes of infection.

The researchers emphasize that while whole genome sequencing cannot replace other more traditional types of diseases analysis it can greatly increase the ability of scientists to distinguish between different pathogens as the cause of disease.

“Our findings demonstrate that the MRSA strains we studied are capable of transmission between animals and humans, which highlights the role of livestock as a potential reservoir of antibiotic-resistant bacteria,” remarked Ewan Harrison, one of the lead authors of the study.

Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC

Ewan M. Harrison, Gavin K. Paterson, Matthew T.G. Holden, Jesper Larsen, Marc Stegger, Anders Rhod Larsen, Andreas Petersen, Robert L. Skov, Judit Marta Christensen, Anne Bak Zeuthen, Ole Heltberg, Simon R. Harris, Ruth N. Zadoks, Julian Parkhill, Sharon J. Peacock, Mark A. Holmes
Read the paper: http://onlinelibrary.wiley.com/doi/10.1002/emmm.201202413/full

doi: 10.1002/emmm.201202413

Further information on EMBO Molecular Medicine is available at www.embomolmed.org

Media Contacts
Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org

About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to sup-port talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in tech-niques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Media Contact

Yvonne Kaul EMBO Communications

More Information:

http://www.embo.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Memory Self-Test via Smartphone

… Can Identify Early Signs of Alzheimer’s disease. Dedicated memory tests on smartphones enable the detection of “mild cognitive impairment”, a condition that may indicate Alzheimer’s disease, with high accuracy….

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Partners & Sponsors