Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing studies help pinpoint gene in Prader-Willi syndrome

30.09.2013
As so many genome studies do, this study published online in the journal Nature Genetics began with a single patient and his parents who were in search of a diagnosis.

The parents of this first patient sought genetic testing for Prader-Willi syndrome when he was only a year old, but the test, which was still in its infancy, came back negative.

For the next 12 years, his parents were left in limbo. He had many features of the disease – including lack of muscle tone, feeding difficulties and failure to thrive early on. Autism spectrum disorder and mild intellectual disability became evident as he grew older.

Dr. C. Thomas Caskey, then with UTHealth and now with Baylor College of Medicine, referred the patient to Dr. Christian Schaaf, an assistant professor of molecular and human genetics at Baylor College of Medicine and a faculty member at the Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, for an evaluation. Schaaf agreed that the boy had many of the outward signs consistent with Prader-Willi, but others were lacking, such as the morbid obesity, which is typically caused by a very aggressive appetite.

Dr. Manuel L. Gonzalez-Garay (co-first and co-corresponding author), assistant professor and bioinformatics expert at the University of Texas Health Science Center at Houston's Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, identified a single change (called a point mutation) in the gene MAGEL2 using highly accurate whole genome sequencing information from Complete Genomics, Inc., of Mountain View California. This gene is located in the area of chromosome 15, which researchers knew was involved in Prader-Willi syndrome. The single base deletion found in this GC-rich and difficult to sequence gene is a frame-shift mutation that disrupts activity of the protein product of MAGEL2.

Prader-Willi syndrome is an imprinted disease, which means only one of the two copies of the gene inherited from your parents is working. The other is "silenced," usually during the formation of eggs or sperm. In this case, neither parent had a mutation, meaning that the mutation occurred first in this child. However, it still mattered whether the mutation came from the mother or the father.

The team from UTHealth and Complete Genomics then performed an involved analysis that determined that the mutated gene was on the paternal chromosome 15.

"Because the mom's copy of the gene is silenced and the dad's copy is deficient, there is no functional copy of the gene in his body," said Schaaf. "It was a nice collaboration among Baylor, UTHealth and Complete Genomics. But it was only one patient. When you identify a new gene and want to prove that it is the real cause of disease, you really need to identify several patients with mutations in the same gene, and show that they also have similar clinical manifestations. You also ought to consider the severity of the mutation and how rare the mutation is."

To start, they began to look for other patients. They asked the Baylor Whole Genome Sequencing Laboratory to find out if there had been similar mutations found in patients who had their exomes or protein-coding portions of the genome sequenced. They searched through the records of 1,200 and found three more patients with mutations in the same gene. One of the three had classic Prader-Willi syndrome, the other two were classified as Prader-Willi like. All three children had the standard molecular testing for Prader-Willi when they were infants, with negative results.

"This is the first report of point mutations causing Prader-Willi syndrome," said Schaaf. "Always before, researchers had identified deletions in the chromosome or uniparental disomy, which means that both chromosomes 15 were inherited from the mother, and none from the father. We have shown that also a single base pair alteration (of nucleotides in the genetic material) can cause Prader-Willi syndrome."

The Baylor lab began offering the testing on July 15. Not only does it offer testing for the mutation but also to identify whether the mutation occurs on the gene from the mother or the father.

"This study speaks to the value of collaboration and the power of the whole genome testing," said Schaaf. "It showed me again how important it is to these families to find 'an answer'. Many have been through years of uncertainty, with dozens of diagnostic tests coming back with negative results. Finding the cause puts things at rest, and empowers the families, as they can get better anticipatory guidance and better estimate of recurrence risk within their family."

Perhaps some day, he said, it might be possible to "un-silence" the silenced copy of the gene. "It's been done in mice with other diseases involving imprinted genes, and there's some evidence it might work in humans as well."

Others who took part in this work include: Fan Xia, Lorraine Potocki, Baili Zhang, Arthur L. Beaudet, and Yaping Yang, all of BCM; Brock A. Peters, Mark A. McElwain, and Radoje Drmanac, all from Complete Genomics; and Karen W. Gripp of Alfred I. DuPont Hospital for Children in Wilmington, Delaware.

Funding for this work comes from the Joan and Stanford Alexander family, the Cullen Foundation for Higher Education and the Houston Foundation. Schaaf is also a recipient of a Clinical Scientist Development Award by the Doris Duke Charitable Foundation.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

In the ocean's twilight zone, tiny organisms may have giant effect on Earth's carbon cycle

19.07.2018 | Earth Sciences

Lying in a foreign language is easier

19.07.2018 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>