Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensory Stimuli Control Dopamine in the Brain

13.01.2017

Type and intensity of stimuli control the activity of nerve cells that release the neurotransmitter dopamine

Regardless of whether we are sitting in a loud aeroplane or walking through a quiet forest clearing, how humans perceive their environment depends on the stimuli. This, in turn, affects our behaviour – sometimes consciously, sometimes subconsciously.


A four-millimetre-long larvae of zebrafish with visible nerve cells under the microscope.

Photo: Research group Driever

In their study of fish larvae, Prof. Dr. Wolfgang Driever and his team of neurobiologists at the University of Freiburg have discovered that a group of nerve cells in the forebrain release the neurotransmitter dopamine when activated by tactile or certain visual stimuli.

These dopaminergic nerve cells send connections to almost all parts of the brain and spinal cord, thereby affecting the functions of many circuits. These new findings could play a role in the future treatment of such illnesses as restless leg syndrome, a condition in which patients have unpleasant sensations in their limbs during sleep. The researchers have published their research results in the journal Current Biology.

For their research, the scientists studied the four-millimetre-long larvae of zebrafish, which are common aquarium fish. The scientists observed the activity of individual dopaminergic nerve cells within the brains of the larvae, which were alert and active, under a microscope. The researchers were able to make their activity visible using optogenetic calcium sensors, which emit light in active nerve cells.

Until now, studies of the dopaminergic nerve cells in vertebrates have primarily focused on the midbrain, where the dopaminergic cells are involved in the control of locomotion and reward behaviour. These become functionally impaired in patients with Parkinson's disease.

The dopaminergic neurons of the forebrain, on the other hand, have been little researched until now because they are located deep in the brain and are therefore difficult to reach. In the forebrain, they are also connected to parts of the hypothalamus, which controls the switch in basic behaviour, such as fight or flight and rest or sleep.

The findings of the team of researchers from the University of Freiburg reveal that certain intense sensory stimuli may affect such basic behaviour through the activity of dopaminergic nerve cells. Because there are also connections between these nerve cells and the sensory organs, it is possible that dopaminergic nerve cells are involved in adjusting the sensitivity of sensory organs’ reactions to stimuli.

This function could be useful for treating diseases. The properties of dopaminergic nerve cells in the forebrain could thus be used in the future to reduce the sensation of patients with restless legs syndrome and hence to supress the tingling in their extremities that occurs when sleeping.

Further research of these dopaminergic neurons is expected to help scientists understand how these diseases develop – and in general how humans adapt to quickly changing stimuli and sensations in their environments.

This research study was a collaboration with BIOSS Centre for Biological Signalling Studies, Cluster of Excellence at the University of Freiburg. Wolfgang Driever is a member of BIOSS and a professor at the Institute of Biology I at the University of Freiburg. Dr. Aristides Arrenberg is a researcher in Driever’s lab and a recipient of the post-doc grant Eliteprogramm für Postdoktoranden from the Baden-Württemberg Stiftung.

Original publication:
Sebastian Reinig, Wolfgang Driever, and Aristides Arrenberg: The descending diencephalic dopamine system is tuned to sensory stimuli. Current Biology, 12 January 2016.
www.cell.com/current-biology/fulltext/S0960-9822(16)31446-4

Caption:
A four-millimetre-long larvae of zebrafish with visible nerve cells under the microscope. Photo: Research group Driever

Contact:
Prof. Dr. Wolfgang Driever
Faculty of Biology
University of Freiburg
Phone: +49 (0)761 / 203 - 2587
E-Mail: driever@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2017/pm.2017-01-13.5-en?set_language=en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>