Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor array detects single molecules for the first time

08.03.2010
Carbon nanotube sensor detects hydrogen peroxide emanating from a single living cell

MIT chemical engineers have built a sensor array that, for the first time, can detect single molecules of hydrogen peroxide emanating from a single living cell.

Hydrogen peroxide has long been known to damage cells and their DNA, but scientists have recently uncovered evidence that points to a more beneficial role: it appears to act as a signaling molecule in a critical cell pathway that stimulates growth, among other functions.

When that pathway goes awry, cells can become cancerous, so understanding hydrogen peroxide's role could lead to new targets for potential cancer drugs, says Michael Strano, leader of the research team. Strano and his colleagues describe their new sensor array, which is made of carbon nanotubes, in the March 7 online edition of Nature Nanotechnology.

Strano's team used the array to study the flux of hydrogen peroxide that occurs when a common growth factor called EGF activates its target, a receptor known as EGFR, located on cell surfaces. For the first time, the team showed that hydrogen peroxide levels more than double when EGFR is activated.

EGF and other growth factors induce cells to grow or divide through a complex cascade of reactions inside the cell. It's still unclear exactly how hydrogen peroxide affects this process, but Strano speculates that it may somehow amplify the EGFR signal, reinforcing the message to the cell. Because hydrogen peroxide is a small molecule that doesn't diffuse far (about 200 nanometers), the signal would be limited to the cell where it was produced.

The team also found that in skin cancer cells, believed to have overactive EGFR activity, the hydrogen peroxide flux was 10 times greater than in normal cells. Because of that dramatic difference, Strano believes this technology could be useful in building diagnostic devices for some types of cancer.

"You could envision a small handheld device, for example, which your doctor could point at some tissue in a minimally invasive manner and tell if this pathway is corrupted," he says.

Strano points out that this is the first time an array of sensors with single-molecule specificity has ever been demonstrated. He and his colleagues derived mathematically that such an array can distinguish "near field" molecular generation from that which takes place far from the sensor surface. "Arrays of this type have the ability to distinguish, for example, if single molecules are coming from an enzyme located on the cell surface, or from deep within the cell," says Strano.

How they did it: The sensor consists of a film of carbon nanotubes embedded in collagen. Cells can grow on the collagen surface, and the collagen also attracts and traps hydrogen peroxide released by the cell. When the nanotubes come in contact with the trapped hydrogen peroxide, their fluorescence flickers. By counting the flickers, one can obtain an accurate count of the incident molecules.

Next steps: Researchers in Strano's lab plan to study different forms of the EGF receptor to better characterize the hydrogen peroxide flux and its role in cell signaling. They have already discovered that molecules of oxygen are consumed to generate the peroxide.

Strano's team is also working on carbon nanotube sensors for other molecules. The team has already successfully tested sensors for nitric oxide and ATP (the molecule that carries energy within a cell). "The list of biomolecules that we can now detect very specifically and selectively is growing rapidly," says Strano, who also points out that the ability to detect and count single molecules sets carbon nanotubes apart from many other nanosensor platforms.

Source: "Detection of single-molecule H2O2 signaling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes," Hong Jin, Daniel Heller, Marie Kalbacova, Jong-Ho Kim, Jingqing Zhang, Ardemis Boghossian, Narendra Maheshri, Michael Strano. Nature Nanotechnology, March 7.

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>