Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Selfish chromosomes make harmful fungus vulnerable to attack

12.02.2019

Members of Kiel Evolution Center discover fundamentally new traits in the inheritance mechanisms of a plant-damaging fungus.

Wheat is the world's second most extensively cultivated cereal crop, and in many countries an indispensable ingredient of essential staple foods. In Germany alone, 20-25 million tons of this grain are harvested per year. However, wheat cultivation in north-western Europe faces a fungal pest, which in extreme cases can cause losses of around 50 percent of the harvest.


Confocal microscope image of the infection of a wheat plant: the fungus penetrates the stomata of the leaves, and can spread between the plant cells.

© Dr. Janine Haueisen


A wheat leaf infested with the fungus Zymoseptoria tritici shows the typical signs of so-called leaf blotch, which can lead to drastic crop failures.

© Dr. Janine Haueisen

The fight against the fungus Zymoseptoria tritici is therefore of fundamental importance for food security. Disease management has so far mainly occurred in the conventional way through the widespread use of fungicides - with all the associated disadvantages for the environment and consumers.

Because the fungus is becoming more resistant to fungicides and, conversely, there are no wheat varieties that are completely resistant to the pest, scientists at Kiel University (CAU) together with colleagues worldwide are intensively researching sustainable ways to keep the fungus in check.

Translational Evolutionary Research
At the CAU, the Kiel Evolution Center (KEC) in particular is working on applying evolutionary biological principles and making them usable, among other things, for pest control. An important step in this direction has now been taken by a KEC research team, together with the Max Planck Institute for Evolutionary Biology in Plön (MPI-EB), through their investigation of the basics of inheritance in this harmful fungus, and thereby also potential ways to combat it.

The Kiel researchers discovered that the so-called meiosis, i.e. the maturation division of germ cells and the associated multiplication of genetic information, occurs differently in Zymoseptoria tritici than previously thought. This fungus has additional, unpaired chromosomes that can pass on genetic information to all their offspring and not just half of the following generations.

"We have found that the chromosomes, but not the fungus as a whole, gain an evolutionary advantage through this type of inheritance," emphasised Dr Michael Habig, first author of the study and research associate in the Environmental Genomics group at the CAU Botanical Institute.

"Only the chromosomes themselves benefit by passing on their characteristics to all descendants, and thus in a figurative sense they act egoistically," continued Habig. The researchers described this phenomenon in Zymoseptoria tritici for the first time, and recently published their results in the journal eLife.

Meiosis - an old acquaintance from biology class?
At the centre of the newly-described inheritance process is meiosis, which is a key step in sexual reproduction, and apparently takes place fundamentally differently in this fungus than previously thought.

In normal so-called Mendelian inheritance, it serves to combine the different maternal and paternal chromosomes in the form of so-called homologous chromosomes, and pass these on to the descendants. In this way, the offspring inherit half of their genetic characteristics from both the mother and father.

In contrast, meiosis seems to take place differently in Zymoseptoria tritici - especially regarding the so-called supernumerary chromosomes, which cannot combine with the relevant paternal or maternal counterpart. These unpaired chromosomes are thus inherited exclusively from either the mother or the father. The researchers were able to demonstrate that the maternal supernumerary chromosomes are passed on to all descendants, and not as expected only half of the descendants.

"The driving force behind this strategy is the so-called meiotic drive, which ensures the increased transmission of chromosomes to the next generation," emphasised Professor Eva Stukenbrock, head of the Environmental Genomics group, which is jointly based at the CAU and the MPI-EB, and board member of the KEC. "This alternative method of inheritance was already known from other organisms. We could now prove it in Zymoseptoria tritici, and have found very many of the chromosomes involved in this meiotic drive," continued Stukenbrock.

A potential gateway to combating wheat pests
For the organism as a whole, inheritance through supernumerary chromosomes seems to be mainly a negative process. Why the fungus has nevertheless retained this in the course of evolution, over a long period of time, has not yet been fully understood. On the one hand, it inhibits the fungus’ ability to infect wheat, but on the other hand possibly increases its ability to adapt to changing environmental conditions.

However, the Kiel researchers particularly see the chromosomes’ egotistical strategy as offering potential for new means of combating the harmful fungus in future. "Perhaps we will be able to introduce specific genetic information into the fungus through this special type of inheritance, which could substantially reduce its harmfulness to wheat," Habig said optimistically.

"In doing so, one could take advantage of the fact that all offspring will be equipped with the corresponding genetic information," added Habig. The methods required to do this, such as so-called genome editing, are currently being intensively researched worldwide. So in future, the principle discovered at the KEC could help to permanently protect wheat plants against attack by Zymoseptoria tritici.

Photos are available to download:
https://www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2019/039-habig-...
Caption: A wheat leaf infested with the fungus Zymoseptoria tritici shows the typical signs of so-called leaf blotch, which can lead to drastic crop failures.
© Dr Janine Haueisen

https://www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2019/039-habig-...
Caption: Confocal microscope image of the infection of a wheat plant: the fungus penetrates the stomata of the leaves, and can spread between the plant cells.
© Dr Janine Haueisen

More information:
Environmental Genomics group, Botanical Institute, Kiel University/
Max Planck Institute for Evolutionary Biology in Plön:
http://web.evolbio.mpg.de/envgen/

Research centre “Kiel Evolution Center”, Kiel University:
http://www.kec.uni-kiel.de

Kiel University (CAU)
Press, Communication and Marketing, Dr Boris Pawlowski, Text: Christian Urban
Postal address: D-24098 Kiel, Germany, Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni
Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

Wissenschaftliche Ansprechpartner:

Dr Michael Habig
Environmental Genomics group
Botanical Institute, Kiel University
Tel.: +49 (0)431-880 -6361
E-mail: mhabig@bot.uni-kiel.de

Prof. Eva Stukenbrock
Head of the Environmental Genomics group
Botanical Institute, Kiel University
Tel.: +49 (0)431-880 -6368
E-mail: estukenbrock@bot.uni-kiel.de

Originalpublikation:

Michael Habig, Gert HJ Kema and Eva Holtgrewe Stukenbrock (2018):
Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus eLife https://dx.doi.org/10.7554/eLife.40251.001

Weitere Informationen:

http://web.evolbio.mpg.de/envgen/
http://www.kec.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht New technique to determine protein structures may solve biomedical puzzles
11.12.2019 | Dana-Farber Cancer Institute

nachricht NTU Singapore scientists convert plastics into useful chemicals using su
11.12.2019 | Nanyang Technological University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>