Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-driving robots collect water samples to create snapshots of ocean microbes

08.03.2018

For the first time, scientists from the University of Hawai'i at Mānoa (UH Mānoa) and the Monterey Bay Aquarium Research Institute (MBARI) will deploy a small fleet of long-range autonomous underwater vehicles (LRAUVs) that have the ability to collect and archive seawater samples automatically. These new robots will allow researchers to track and study ocean microbes in unprecedented detail.

Ocean microbes produce at least fifty percent of the oxygen in our atmosphere while removing large amounts of carbon dioxide. They also form the foundation of marine food webs, including those that support global ocean fisheries. Edward DeLong and David Karl, oceanography professors in the UH Mānoa School of Ocean and Earth Science and Technology (SOEST) have been studying these microbes for decades.


A long-range autonomous underwater vehicle carrying an environmental sample processor cruises beneath the surface during field trials in Hawaii.

Image courtesy of Elisha Wood-Charlson, University of Hawaii

Usage Restrictions. Image may only be used in association with a story about this research.

For this project, they and their teams are collaborating with engineers from MBARI to test new ways of adaptively sampling oceanographic features such as open-ocean eddies, swirling masses of water that move slowly across the Pacific Ocean, which can have large effects on ocean microbes.

In late February 2018, MBARI engineers completed the construction and testing of three new LRAUVs in collaboration with UH Mānoa scientists, and delivered them last week for their first deployment in Hawaiian waters. As the LRAUVs move through the ocean, they collect information about water temperature, chemistry, and chlorophyll (an indicator of microscopic algae) and send this data to scientists on shore or on a nearby ship.

Additionally, a unique aspect of these AUVs is an integrated Environmental Sample Processor (ESP), a miniature robotic laboratory that collects and preserves seawater samples at sea, allowing researchers to capture a snapshot of the organisms' genetic material and proteins.

MBARI has been developing ESPs for about 15 years. The first instruments were about the size of a 55-gallon drum. These latest ESPs, the third generation, are eight to ten inches in diameter--one-tenth the original size--and were designed specifically to fit inside an LRAUV.

Jim Birch, MBARI's lead engineer on the ESP project commented, "When we first talked about putting an ESP in an AUV, I thought to myself 'this is never going to happen.' But now I really think this is going to transform oceanography by giving us a persistent presence in the ocean--a presence that doesn't require a boat, can operate in any weather condition, and can stay within the same water mass as it drifts around the open ocean."

With its surveying ability, the LRAUV allows scientists to discover, track, and sample open-ocean eddies, which can be over 100 kilometers (62 miles) across and last for months. When these eddies spin counterclockwise they bring water from the depths up toward the surface. This water often carries nutrients that microscopic algae (phytoplankton) need to survive.

"The new LRAUVs can transit for over 600 miles, and use their own 'eyes and ears' to detect important oceanographic events like phytoplankton blooms," DeLong explained. "These new underwater drones will greatly extend our reach to study remote areas, and also will allow us to sample and study oceanographic events and features we can see by remote satellite imaging, even when ships are not available."

An expeditionary cruise aboard the Schmidt Ocean Institute's (SOI) research vessel Falkor leaves on March 10 for open-ocean sea trials of MBARI's newly-designed LRAUVs. During this cruise, the researchers will locate an eddy using satellite data and then deploy the LRAUVs to survey the feature and collect water samples. When the robots return to the surface and are recovered, UH Mānoa researchers will extract DNA from the filters. This information will provide unique insight into the eddy's duration, stability, and influence on the ocean systems; and will improve current ocean models, which are critical for developing expectations on the health of future oceans.

"Although this fleet of AUVs will never replace our need for a capable research vessel, it will provide much needed access to the sea and the collection of novel data sets that would not otherwise be possible," said Karl.

###

This research is supported by the Simons Foundation, the National Science Foundation, the Schmidt Ocean Institute, the David and Lucile Packard Foundation, and the State of Hawai'i.

Media Contact

Kim Fulton-Bennett
kfb@mbari.org
831-775-1835

 @MBARI_news

http://www.mbari.org 

Kim Fulton-Bennett | EurekAlert!
Further information:
https://www.mbari.org/long-range-auv-esp/

Further reports about: Bay Aquarium Research MBARI microbes microscopic algae vessel

More articles from Life Sciences:

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

nachricht How do muscles know what time it is?
21.08.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>