Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-assembled nanostructures hit their target

23.09.2016

A biocompatible nanomaterial that can be controlled with light finds a use in gene delivery.

A tiny therapeutic delivery system that can control the body’s ability to manufacture proteins has been developed by Saudi Arabia's King Abdullah University of Science and Technology (KAUST) researchers [1].


The self-assembled biocompatible nanomaterial delivers the miRNA into the cell and then releases it when struck by light. © 2016 KAUST

Genes contain the instructions for manufacturing the proteins that make up our body. Genetic information is translated into the proteins needed to build living cells through a transcription process in which DNA’s genetic code is copied into a large molecule known as messenger RNA (mRNA).

This transcription process can be altered by introducing short double-strands of RNA, referred to as small interfering RNA (siRNA), which binds to the mRNA and inhibits the expression of particular genes. Harnessing this RNA interference for therapeutic applications is difficult and requires a material that can protect the siRNA as it travels through the bloodstream, helping it to penetrate the cell’s outer membrane and deliver it to its target location.

“Delivery of RNA is very tricky as it can be readily digested by cells. Better vehicles are needed so more RNA can be delivered in order to edit genes,” says Niveen Khashab from the KAUST Smart Hybrid Materials Laboratory.

Khashab and her colleagues have now demonstrated biocompatible nanostructures for delivering siRNA and efficiently silencing genes1. They combined the macromolecule histidine-capped-9,10-dialkoxy-anthracene (HDA) and siRNA in water. They observed the self-assembly of spherical nanoparticles when the water was slightly acidic, but not when it was pH neutral.

Khashab explains that these nanospheres are created by the electrostatic interaction between the positively charged HDA and negatively charged RNA, and then the two long arms of the HDA supramolecular wrap around the siRNA to protect it.

“Our organic linker is able to interact with genetic materials by hydrogen bonds and form a delivery vehicle,” explains Khashab. “The approach is scalable and creates reproducible amounts of encapsulated RNA; it is also biocompatible and safe.”

The nanoparticles could also be activated with visible light. When irradiated by green radiation while in the presence of an acidic fluorescent compound, known as eosin, the sphere disassembles and releases the siRNA.

The team showed the effectiveness of the nanoparticle for drug delivery on B-cell lymphoma 2, an mRNA molecule that creates proteins for regulating cell death. They showed that their nanostructures enhance the gene-silencing efficacy and led to gene knockdown of more than 90 percent after exposure to visible-light.

“The next step is to tweak the design to deliver other cargo molecules such as protein and improve the light response to higher wavelength in the near infrared,” says Khashab.

Associated links

Journal information

[1] Patil, S. P., Moosa, B. A., Alsaiari, S., Alamoudi, K., Alshamsan, A., et al. Supramolecular self-assembly of histidine-capped-dialkoxy-anthracene: A visible-light-triggered platform for facile siRNA delivery. Chemistry - A European Journal advance online publication, 28 July 2016 (doi: 10.1002/chem.201601442)

Michelle D'Antoni | Research SEA
Further information:
http://www.researchsea.com

Further reports about: Nanoparticles RNA biocompatible deliver genes mRNA nanostructures proteins siRNA transcription process

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>