Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeking Social Genes

02.02.2011
Researchers compare insect genomes to hone in on genes associated with complex social structure

In order understand the evolution of complex societies, researchers are sequencing the genomes of social insects. The most recent data, published this week in the Early Edition of Proceedings of the National Academy of Sciences, come from several species of ants, including the red harvester ant, Pogonomyrmex barbatus.

A team, lead by Arizona State University organismal and systems biology professor Juergen Gadau, sequenced one of the genomes and set out to decipher which genes might be responsible for defining which ants work and which ants reproduce in a red harvester ant colony.

Division of labor and reproduction are two crucial characteristics scientists think are important to the evolution of social structure. "Having multiple independently evolved social genomes helps us to better understand which genes are involved in crucial social traits, because those should be highly conserved," Gadau said.

In addition to specialization of roles within a colony, researchers argue that development of methods to communicate information is another key aspect of eusociality, the extreme form of social behavior exhibited by certain bees, termites and ants.

This study was funded by the Division of Integrative Organismal Systems, part of the National Science Foundation's Biology Directorate. The Developmental Systems Cluster within the division supports research aimed at understanding how interacting developmental processes give rise to the emergent properties of organisms.

Results from Gadau's study reveal that, compared to other insects, the red harvester ant genome has significantly more genes associated with the sense of smell, as well as detection and metabolism of chemical signals. This is consistent with the fact that ants use chemical signals to communicate.

Another difference appears in the genes of the ant's immune system. Previously, scientists hypothesized that ants may have evolved novel immune responses or specialized behaviors to avoid disease outbreaks within their dense populations. These results indicate the former may be a distinct possibility, however future comparisons with other insect genomes should yield more insight into the significance of the differences observed in this study.

"The diversity in social structure between the different ants sequenced will allow us to search for the genetic basis and the architecture underlying the observed social diversity in ants," Gadau explained. "A comparison with bees, a completely independent evolutionary lineage, will give us an opportunity to test whether there are multiple ways how a genome can become a sociogenome."

Finally, the team observed evidence of epigenetic differences--or changes in appearance that can be inherited--in genes related to division of labor and reproduction. In this case, the genes responsible for development of wings and ovaries, role-specific traits in a red harvester and colony, appear to show some differences.

According to the researchers, the finding implies that, although the genes themselves are present in both worker and queen ants, when and where the genes are expressed is highly regulated and heritable from one generation to the next.

"Everything we can learn about epigenetic modifications will probably have major implications for human health since these mechanisms are thought to be critical in the development of complex diseases of humans, such as mental illnesses and diabetes," said Gadau.

Media Contacts
Lisa Van Pay, NSF (703) 292-8796 lvanpay@nsf.gov
Margaret Coulombe, Arizona State University (480) 727-8934 margaret.coulombe@asu.edu
Principal Investigators
Juergen Gadau, Arizona State University (480) 965-2349 jgadau@asu.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Lisa Van Pay | EurekAlert!
Further information:
http://www.nsf.gov

Further reports about: NSF Social Impacts chemical signals genes social structure

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>