Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing begins before we actually see anything

22.11.2018

How does vision work, and what happens in the brain during the process? As simple as this question may sound, it has yet to be scientifically clarified in full. Dr. Valentin Riedl of the Technical University of Munich (TUM) and his team have now been able to show that the distribution of the two most important neurotransmitters in the brain changes as soon as we open our eyes, regardless of whether we actually see anything.

To communicate with each other, neurons use chemical messengers known as neurotransmitters. The two most important neurotransmitters in the human brain, glutamate and GABA, have opposing effects: glutamate activates neurons, while GABA suppresses them.


Dr. Valentin Riedl (left), research group leader in the Neuroradiology Department of University Hospital rechts der Isar of the TUM, with his colleague Dr. Christian Sorg.

Kurt Bauer / Technische Universität München

Glutamate, incidentally, is also used as spicy substance and can be found in tomatoes and Parmesan cheese. By altering the concentrations of the two neurotransmitters, the brain is able to process impressions from the eyes, called visual stimuli.

Privatdozent Dr. Valentin Riedl, research group leader in the Neuroradiology Department of University Hospital rechts der Isar of the TUM, and his team have studied how the concentrations of the two neurotransmitters change in the visual cortex, the region in the brain responsible for vision.

The study is unique in that the team used magnetic resonance spectroscopy (MRS) to measure the concentrations of the neurotransmitters in detail and, above all, in parallel.

Visual process triggered by opening the eyes

The experiment consisted of three phases. The subjects first lay in the dark for five minutes with their eyes closed. They then opened their eyes and stared into the darkness.

Finally, they were shown a checkerboard pattern that blinked on and off rapidly. Throughout the experiment, the concentrations of both neurotransmitters in the visual cortex were measured simultaneously.

In the resting state with the eyes closed, GABA levels were high. Surprisingly, however, concentrations of this inhibitory neurotransmitter decreased as soon as the subjects opened their eyes, despite the fact that there was still nothing to see.

“The brain prepares for forthcoming stimuli as soon as the eyes are opened. This phenomenon had never previously been observed, because other studies had not measured this state,” Riedl says. Only when an actual visual stimulus was perceived, i.e. the blinking checkerboard pattern, did the concentration of glutamate, the activating neurotransmitter, increase.

Data consistent with fMRT measurements

For the first time, the researchers also compared their MRS data with data obtained by functional MRI (fMRI), a common method for visualizing human brain activity. In this technique, the consumption of oxygen is measured in specific brain regions. A high consumption is an indirect indicator of neuronal activity in a given area.

They found that changes in neurotransmitter levels in the visual cortex coincided with evidence of brain activity in the fMRI scans. “The results of the two methods agreed perfectly. By combining the two techniques, we’re not only able to say that there is increased activity in a region; for the first time we’re also able to specifically attribute that activity to the two neurotransmitters,” Riedl explains.

Psychiatric disorders as a research field

The findings by Riedl and his team also have clinical relevance. For example, it is suspected that the distribution of the two neurotransmitters is permanently disturbed in psychiatric disorders such as schizophrenia. “To date, however, there is no proof of this. An examination using both spectroscopy and fMRT would provide much more precise and far-reaching information on the concentrations of the neurotransmitters in patients,” Riedl says.

Wissenschaftliche Ansprechpartner:

PD Dr. Valentin Riedl
Neuroimaging Center at University Hospital rechts der Isar of the TUM
Tel.: +49 (0)89 4140 - 7972
valentin.riedl@tum.de

Originalpublikation:

Katarzyna Kurcyus, Efsun Annac, Nina M. Hanning, Ashley D. Harris, Georg Oeltzschner, Richard Edden and Valentin Riedl, Opposite dynamics of GABA and glutamate levels in the occipital cortex during visual processing, Journal of Neuroscience, November 14, 2018, DOI: 10.1523/JNEUROSCI.1214-18.2018
http://www.jneurosci.org/content/38/46/9967

Weitere Informationen:

http://www.neurokopfzentrum.med.tum.de/neuroradiologie/forschung_projekt_intrins... - Profile of Dr. Valentin Riedl
https://mediatum.ub.tum.de/1463716 - Download high-resolution image

Dr. Ulrich Marsch | Technische Universität München
Further information:
http://www.tum.de

Further reports about: MRS eyes fMRI glutamate human brain neurotransmitters visual cortex

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>