Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of gentle touch revealed

10.12.2012
In fruit flies, UCSF researchers uncover the molecular basis of our most mysterious physical sense

Stroke the soft body of a newborn fruit fly larva ever-so-gently with a freshly plucked eyelash, and it will respond to the tickle by altering its movement—an observation that has helped scientists at the University of California, San Francisco (UCSF) uncover the molecular basis of gentle touch, one of the most fundamental but least well understood of our senses.

Our ability to sense gentle touch is known to develop early and to remain ever-present in our lives, from the first loving caresses our mothers lavish on us as newborns to the fading tingle we feel as our lives slip away. But until now, scientists have not known exactly how humans and other organisms perceive such sensations.

In an article published online this week in the journal Nature, the UCSF team has identified the exact subset of nerve cells responsible for communicating gentle touch to the brains of Drosophila larvae—called class III neurons. They also uncovered a particular protein called NOMPC, which is found abundantly at the spiky ends of the nerves and appears to be critical for sensing gentle touch in flies.

Without this key molecule, the team discovered, flies are insensitive to any amount of eyelash stroking, and if NOMPC is inserted into neurons that cannot sense gentle touch, those neurons gain the ability to do so.

"NOMPC is sufficient to confer sensitivity to gentle touch," said Yuh Nung Jan, PhD, a professor of physiology, biochemistry and biophysics and a Howard Hughes Medical Institute investigator at UCSF. Jan led the study with his wife Lily Jan, PhD, who is also a UCSF professor and a Howard Hughes Medical Institute investigator.

The work sheds light on a poorly understood yet fundamental sense through which humans experience the world and derive pleasure and comfort.

Jan added that while the new work reveals much, many unanswered questions remain, including the exact mechanism through which NOMPC detects mechanical force and the identity of the analogous human molecules that confer gentle touch sensitivity in people.

The discovery is a good example of basic brain research paving the way toward answering such questions. UCSF is a world leader in the neurosciences, carrying out research that spans the spectrum from fundamental questions of how the brain works to the clinical development of new drugs and precision tools to address brain diseases; educating the next generation of neuroscientists, neurologists and neurosurgeons; and offering excellent patient care for neurological diseases.

Why is Touch Still Such a Mystery?

Though it is fundamental to our experience of the world, our sense of gentle touch has been the least well understood of our senses scientifically, because, unlike with vision or taste, scientists have not known the identity of the molecules that mediate it.

Scientists generally feel that, like those other senses, the sense of touch is governed by peripheral nerve fibers stretching from the spine to nerve endings all over the body. Special molecules in these nerve endings detect the mechanical movement of the skin surrounding them when it is touched, and they respond by opening and allowing ions to rush in. The nerve cell registers this response, and if the signal is strong enough, it will fire, signaling the gentle touch to the brain.

What has been missing from the picture, however, are the details of this process. The new finding is a milestone in that it defines the exact nerves and uncovers the identity of the NOMPC channel, one of the major molecular players involved—at least in flies.

Jan and his colleagues made this discovery through an unusual route. They were looking at the basic physiology of the developing fruit fly, examining how class III neurons develop in larvae. They noticed that when these cells developed in the insects, their nerve endings would always become branches into spiky "dendrites."

Wanting to know what these neurons are responsible for, they examined them closely and found the protein NOMPC was abundant at the spiky ends. They then examined a fly genetically engineered to have a non-functioning form of NOMPC and showed that it was insensitive to gentle touch. They also showed that they could induce touch sensitivity in neurons that do not normally respond to gentle touch by inserting copies of the NOMPC protein into them.

The article, "Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation" is authored by Zhiqiang Yan, Wei Zhang, Ye He, David Gorczyca, Yang Xiang, Li E. Cheng, Shan Meltzer, Lily Yeh Jan and Yuh Nung Jan. It appears as an Advanced Online Publication by the journal Nature on December 9, 2012.

This work was funded by the National Institutes of Health via grant #R37NS040929 and #5R01MH084234; by the Howard Hughes Medical Institute; and through two Long-Term Fellowships from the Human Frontier Science Program.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Münster University researchers develop new synthesis method for producing fluorinated piperidines
22.01.2019 | Westfälische Wilhelms-Universität Münster

nachricht New blood vessel system discovered in bones
22.01.2019 | Universität Duisburg-Essen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Mechanical engineers develop process to 3D print piezoelectric materials

22.01.2019 | Materials Sciences

Energizing the immune system to eat cancer

22.01.2019 | Health and Medicine

Early Prediction of Alzheimer’s Progression in Blood

22.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>