Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secrets of a tadpole's tail and the implications for human healing

14.01.2013
Scientists at The University of Manchester have made a surprising finding after studying how tadpoles re-grow their tails which could have big implications for research into human healing and regeneration.

It is generally appreciated that frogs and salamanders have remarkable regenerative capacities, in contrast to mammals, including humans. For example, if a tadpole loses its tail a new one will regenerate within a week. For several years Professor Enrique Amaya and his team at The Healing Foundation Centre in the Faculty of Life Sciences have been trying to better understand the regeneration process, in the hope of eventually using this information to find new therapies that will improve the ability of humans to heal and regenerate better.

In an earlier study, Professor Amaya's group identified which genes were activated during tail regeneration. Unexpectedly, that study showed that several genes that are involved in metabolism are activated, in particular those that are linked to the production of reactive oxygen species (ROS) - chemically reactive molecules containing oxygen. What was unusually about those findings is that ROS are commonly believed to be harmful to cells.

Professor Amaya and his group decided to follow up on this unexpected result and their new findings will be published in the next issue of Nature Cell Biology.

To examine ROS during tail regeneration, they measured the level of H2O2 (hydrogen peroxide, a common reactive oxygen species in cells) using a fluorescent molecule that changes light emission properties in the presence of H2O2. Using this advanced form of imaging, Professor Amaya and his group were able to show that a marked increase in H2O2 occurs following tail amputation and interestingly, they showed that the H2O2 levels remained elevated during the entire tail regeneration process, which lasts several days.

Talking about the research Professor Amaya says: "We were very surprised to find these high levels of ROS during tail regeneration. Traditionally, ROS have been thought to have a negative impact on cells. But in this case they seemed to be having a positive impact on tail re-growth."

To assess how vital the presence of ROS are in the regeneration process, Professor Amaya's team limited ROS production using two methods. The first was by using chemicals, including an antioxidant, and the second was by removing a gene responsible for ROS production. In both cases the regeneration process was inhibited and the tadpole tail did not grow back.

Professor Amaya says: "When we decreased ROS levels, tissue growth and regeneration failed to occur. Our research suggests that ROS are essential to initiate and sustain the regeneration response. We also found that ROS production is essential to activate Wnt signalling, which has been implicated in essentially every studied regeneration system, including those found in humans. It was also striking that our study showed that antioxidants had such a negative impact on tissue regrowth, as we are often told that antioxidants should be beneficial to health."

The publication of Professor Amaya's study comes just days after a paper from the Nobel Prize winner and co-discoverer of the structure of DNA, James Watson, who has suggested antioxidants could be harmful to people in the later stages of cancer.

Professor Amaya comments: "It's very interesting that two papers suggesting that antioxidants may not always be beneficial have been published recently. Our findings and those of others are leading to a reversal in our thinking about the relative beneficial versus harmful effects that oxidants and antioxidants may have on human health, and indeed that oxidants, such as ROS, may play some important beneficial roles in healing and regeneration."

The next step for the team at the Healing Foundation Centre will be to study ROS and their role in the healing and regenerative processes more closely. With a better understanding, Professor Amaya and his team hope to apply their findings to human health to identify whether manipulating ROS levels in the body could improve our ability to heal and regenerate tissues better. Thus these findings have very important implications in regenerative medicine.

Morwenna Grills | EurekAlert!
Further information:
http://www.manchester.ac.uk

Further reports about: Amaya Gates Foundation H2O2 Nobel Prize healing human health oxygen species

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>