Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secret of “Fetid Fluorite” Aired

09.07.2012
Elemental fluorine F2 detected for the first time in a natural mineral

Why does “fetid fluorite”, a mineral that is found in the Upper Palatinate in Bavaria, Germany, have such an unpleasant sharp smell when it is crushed? Scientists in Munich have now found the solution to this puzzle, not only bringing an end to a controversial discussion that has been going on for about 200 years, but also altering a hard and fast textbook rule.

In the journal Angewandte Chemie, the researchers have demonstrated that the stench is caused by elemental fluorine. This unambiguously proves that despite prior assumptions, elemental fluorine does occur in nature.

Elemental fluorine (F2) is an extremely reactive gas that attacks nearly all materials; it even eats away at laboratory glassware. In contrast, chemically bound fluorine atoms in inorganic or organic compounds are – in proper doses – harmless and actually quite useful, whether in fluoride toothpaste, flame retardant materials, or Teflon. It is no wonder that chemists have so far been convinced that fluorine cannot occur in nature in its elemental form, but only as the fluoride ion, for example in minerals like fluorite (CaF2).

One special form of fluorite is found in the “Maria” mine in Wölsendorf in the Upper Palatinate in Germany. The unusual thing about this mineral is its odor, which pricks the nose as soon as this “fetid fluorite” or “antozonite” is crushed. But what causes the smell? Experts have been arguing about this for almost 200 years. A number of important chemists, including Friedrich Wöhler (1800-1882) and Justus von Liebig (1803-1873), discussed possible different substances that may be responsible for the smell. Over the years, elemental fluorine; iodine; ozone; compounds of phosphorus, arsenic, sulfur, and selenium; chlorine; hypochloric acid; and fluoridated hydrocarbons have all been blamed for the stench.

Florian Kraus of the TU Munich, as well as Jörn Schmedt auf der Günne and Martin Mangstl at the Ludwig Maximilians University in Munich have now obtained direct proof: Elemental fluorine is the guilty party that causes the unpleasant odor. By using 19F nuclear magnetic resonance spectroscopy (NMR spectroscopy), they were able to show for the first time that elemental fluorine is contained in “antozonite”.

How is this possible for such a reactive gas? The researchers explain that “antozonite” contains a tiny amount of uranium that, together with its radioactive daughter nuclides, constantly releases radiation into the surrounding mineral. This causes fluorite to split into calcium and elemental fluorine, forming the calcium clusters that give “antozonite” its dark purple color. The fluorine is contained in tiny enclaves surrounded by nonreactive fluorite, which shields it from the calcium, allowing it to maintain its elemental form.

About the Author
Dr. Florian Kraus is Assistant Professor for Anorganic Chemistry at the Technical University of Munich (Germany). His research focuses on the chemistry of fluorine.
Author: Florian Kraus, Technische Universität München (Germany), http://www.ch.tum.de/fkraus/kraus.html
Title: Occurrence of Difluorine F2 in Nature—In Situ Proof and Quantification by NMR Spectroscopy

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201203515

Florian Kraus | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>