Seafarers' scourge provides hope for biofuel future

But new research by scientists at the BBSRC Sustainable Bioenergy Centre at the Universities of York and Portsmouth is uncovering how the tiny marine isopod digests the apparently indigestible.

By examining genes that are expressed in the guts of gribble, the researchers have demonstrated that its digestive system contains enzymes which could hold the key to converting wood and straw into liquid biofuels.

In research published today, a team headed by Professor Simon McQueen-Mason and Professor Neil Bruce at York, and Dr Simon Cragg at Portsmouth reveal that the gribble digestive tract is dominated by enzymes that attack the polymers that make up wood. One of the most abundant enzymes is a cellulose degrading enzyme never before seen in animals.

The research is published in the latest issue of the Proceedings of the National Academy of Sciences USA (PNAS).

Unlike termites and other wood-eating animals, gribble have no helpful microbes in their digestive system. This means that they must possess all of the enzymes needed to convert wood into sugars themselves.

Professor McQueen-Mason, of the Centre for Novel Agricultural Products (CNAP) in the Department of Biology at York, said: “This may provide clues as to how this conversion could be performed in an industrial setting.”

The scientists at York are now studying the enzymes to establish how they work, and whether they can be adapted to industrial applications. Perhaps one day soon seafarers will be sailing the seas on ships powered with biofuels produced with gribble enzymes.

Duncan Eggar, BBSRC Bioenergy Champion, said: “The world needs to quickly reduce its dependence on fossil fuels and sustainably produced bioenergy offers the potential to rapidly introduce liquid transport fuels into our current energy mix.”

The BBSRC Sustainable Bioenergy Centre is a £26M research investment by the Biotechnology and Biological Sciences Research Council and has six research programmes at universities and research institutes.

Media Contact

David Garner EurekAlert!

More Information:

http://www.york.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors