Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sea anemone species discovered in Antarctica

20.01.2014
ANDRILL team finds Edwardsiella andrillae sea anemones burrowed in underside of Ross Ice Shelf

For b-roll of this discovery, please contact Dena Headlee at (703) 292-7739 or dheadlee@nsf.gov.


A new species of sea anemone, Edwardsiella andrillae, is observed living anchored in the ice at the underside of the Ross Ice Shelf, Antarctica--one anemone with an unidentified organism, nicknamed the "eggroll" holding on to it.

Credit: Dr. Frank R. Rack, ANDRILL Science Management Office, University of Nebraska-Lincoln

National Science Foundation (NSF)-funded researchers from the University of Nebraska-Lincoln, while using a camera-equipped robot to survey the area under Antarctica's Ross Ice Shelf, unexpectedly discovered a new species of small sea anemones that were burrowed into the ice, their tentacles protruding into frigid water like flowers from a ceiling.

"The pictures blew my mind, it was really an amazing find," said Marymegan Daly, a specialist in sea anemones at Ohio State University, who studied the specimens retrieved by scientists and engineers with the NSF-funded Antarctic Geological Drilling (ANDRILL) Program's Coulman High project.

The team made the astonishing discovery of thousands upon thousands of the small anemones.

The new species, discovered in late December 2010, was publicly identified for the first time in an article published last month in PLOS ONE, an open-access, peer-reviewed journal published by the Public Library of Science.

Though other sea anemones have been found in Antarctica, the newly discovered species is the first reported to live in ice. They also live upside down, hanging from the ice, compared to other sea anemones that live on or in the seafloor.

The white anemones have been named Edwardsiella andrillae, in honor of the ANDRILL Program.

Scott Borg, who heads the Antarctic Sciences Section in NSF's Division of Polar Programs, noted that the discovery indicates how much remains both unknown and unexplored by scientists, even after more than 50 years of active U.S. research on the Southernmost continent

"It is an absolutely astonishing discovery--and just how the sea anemones create and maintain burrows in the bottom of the ice shelf, while that surface is actively melting, remains an intriguing mystery," he said. "This goes to show how much more we have to learn about the Antarctic and how life there has adapted."

NSF is responsible for managing all scientific research and logistics of the U. S. Antarctic Program on the Antarctic continent and in the Southern ocean.

The discovery was "total serendipity," said Frank Rack, executive director of the ANDRILL Science Management Office at the University of Nebraska-Lincoln. "When we looked up at the bottom of the ice shelf, there they were."

Scientists had lowered the robot--a 4.5-foot cylinder equipped with two cameras, a side-mounted lateral camera and a forward-looking camera with a fish-eye lens--into a hole bored through the 270-meter-thick shelf of ice that extends over 600 miles northward from the grounding zone of the West Antarctic Ice Sheet into the Ross Sea.

Their research mission, funded by NSF with support from the New Zealand Foundation for Research, was to learn more about the ocean currents beneath the ice shelf to provide environmental data for modeling the behavior of the ANDRILL drill string (a length of pipe extending through the water column and into the sea floor through which drilling fluids are circulated and core samples are retrieved), Rack said. They didn't expect to discover any organisms living in the ice, and surely not an entirely new species.

Rack, who is U.S. principal investigator for the environmental surveys that were conducted as part of the international ANDRILL Coulman High project, had left the site via helicopter just prior to the discovery. He was listening by radio when he heard the report from the robot deployment team, composed of engineers Bob Zook, Paul Mahecek and Dustin Carroll, who began shouting as they saw the anemones, which appeared to glow in the camera's light.

"People were literally jumping up and down with excitement," Rack said. "They had found a whole new ecosystem that no one had ever seen before."

"What started out as an engineering test of the remotely operated vehicle during its first deployment through a thick ice shelf turned into a significant and exciting biological discovery," he said.

In addition to the anemones, the scientists saw fish who routinely swam upside down, the ice shelf serving as the floor of their submarine world, as well as polychaete worms, amphipods and a bizarre little creature they dubbed "the eggroll", a four-inch-long, one-inch-diameter, neutrally-buoyant cylinder, that seemed to swim using appendages at both ends of its body, which was observed bumping along the field of sea anemones under the ice and hanging on to them at times.

The anemones themselves measured less than an inch long in their contracted state--though they get three to four times longer in their relaxed state, Daly said. Each features 20 to 24 tentacles, an inner ring of eight longer tentacles and an outer ring of 12 to 16 tentacles.

After using hot water to stun the creatures, the team used an improvised suction device to retrieve the animals from their burrows. They were then transported to McMurdo Station for preservation and further study.

Because the team wasn't hunting for biological discoveries, they were not equipped with the proper supplies to preserve the specimens for DNA/RNA analyses, Rack said. The specimens were placed in ethanol at the drilling site and some were later preserved in formalin at McMurdo Station.

Many mysteries remain about the creatures, the scientists report. Though some sea anemones burrow into sand by using their tentacles or by expanding and deflating the base of their body, those strategies don't seem feasible for hard ice. It is also unclear how they survive without freezing and how they reproduce. There is no evidence of what they eat, although they likely feed on plankton in the water flowing beneath the ice shelf, Daly said.

Rack said a proposal is being prepared for further study of this unusual environment, using a robot capable of exploring deeper in the ocean and further from the access hole through the ice. NASA is helping to finance the development of the new underwater robot because the Antarctic discoveries have implications for the possibility of life that may exist on Europa, the ice-covered moon of Jupiter. He said researchers hope to return to Antarctica as early as 2015 to continue studying the sea anemones and other organisms beneath the ice shelf.


Media Contacts
Nature McGinn, NSF, (703) 292-8224, nmcginn@nsf.gov
Leslie Reed, University of Nebraska-Lincoln, (402) 472-2059, lreed5@unl.edu
Principal Investigators
Frank Rack, ANDRILL Science Management Office, University of Nebraska-Lincoln, (402) 472-4785, frack2@unl.edu

Marymegan Daly, Department of Evolution, Ecology and Organismal Biology, Ohio State University, (614) 247-8412, daly.66@osu.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget was $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Nature McGinn | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>