Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research team defines new painkilling chemical pathway

25.11.2008
Discovery could lead to new pain treatments

Marijuana kills pain by activating a set of proteins known as cannabinoid receptors, which can also regulate appetite, inflammation, and memory. The body also has chemicals known as endocannabinoids that naturally activate these same receptors, namely N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG).

These natural components of the cannabinoid system remain the focus of intense efforts to develop new treatments not only for chronic pain, but also for obesity, anxiety, and depression. However, until the new paper, specific methods to study 2-AG signaling have been lacking.

AEA's activity has been well understood for years. In past research, Cravatt and his team identified an enzyme called fatty acid amide hydrolase, or FAAH, that breaks down AEA, effectively reducing its pain killing activity. A number of compounds are now in clinical development that target and breakdown FAAH, allowing AEA to build up, reducing pain. However, FAAH does not control 2-AG metabolism in vivo, and therefore, the potential biological functions and therapeutic potential of this second endocannabinoid have remained largely unknown.

Teasing out 2-AG's specific impacts have proven challenging. Comparable to FAAH, an enzyme called monoacylglycerol lipase (MAGL) breaks down 2-AG. But, despite numerous attempts, no group had been able to develop a chemical that inhibits MAGL specifically.

"The tools—selective and efficacious MAGL inhibitors—just weren't there, " says Jonathan Long, a graduate student of the Scripps Research Kellogg School of Science and Technology who is a member of the Cravatt lab and a first author of the new paper.

But now, a MAGL-specific inhibitor is finally available, thanks to the lab's new work. Key to this success was Activity-Based Protein Profiling, a unique chemical technique the group devised and has used fruitfully in other inhibitor hunts. This system enables the rapid engineering and testing of chemical compounds against many members of enzyme families, in hope of finding effective and selective inhibitors.

For this project, the group developed about 200 compounds and found that one was a highly effective block for MAGL. The scientists dubbed the compound JZL184, named after Long's initials and the order in the series of potential inhibitors tested. JZL184 effectively blocks only MAGL among more than 40 related brain enzymes, which opened the door for the first definitive study of 2-AG's activity.

A New View of 2-AG

Unlike increased AEA, which causes only reduced pain sensation, the team found that MAGL inhibition using JZL184, and the resulting increase in 2-AG concentration, not only reduced pain in mice, but also induced other effects associated with the cannabinoid receptors, namely hypothermia and decreased movement.

"This really does suggest a sort of segregation of labor, if you will," says Cravatt of the differential effects of elevating AEA versus 2-AG as part of the overall function of the cannabinoid system. "That, I think, is a truly unique result."

While treatments based on inhibiting FAAH show great promise for controlling pain, manipulating MAGL levels could also be a boon for treatment development, especially if 2-AG's other effects, such as hypothermia, can be managed.

"There are so many different types of pain," Cravatt says, "that it's possible some types could be more effectively treated with one treatment than another."

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>