Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research team 'watches' formation of cells' protein factories for first time

01.11.2010
Work could help unravel complexities of the cell and lead to new antibiotics and disease treatments

For Immediate Release – A team from The Scripps Research Institute has revealed the first-ever pictures of the formation of cells' "protein factories." In addition to being a major technical feat on its own, the work could open new pathways for development of antibiotics and treatments for diseases tied to errors in ribosome formation. In addition, the techniques developed in the study can now be applied to other complex challenges in the understanding of cellular processes.

Identifying and observing the molecules that form ribosomes—the cellular factories that build the proteins essential for life—has for decades been a key goal for biologists but one that had seemed nearly unattainable. But the new Scripps Research study, which appears in the October 29, 2010 issue of the journal Science, yielded pictures of the chemical intermediate steps in ribosome creation.

"For me it was a dream experiment," said project leader James Williamson, Ph.D., professor, member of the Skaggs Institute for Chemical Biology, and dean of graduate and postgraduate studies at Scripps Research, who credits collaborators at the Scripps Research National Resource for Automated Molecular Microscopy (NRAMM) facility for making it possible. "We have great colleagues at Scripps to collaborate with who are willing to try some crazy experiments, and when they work it's just beautiful."

Past studies of the intermediate molecules that combine to form ribosomes and other cellular components have been severely limited by imaging technologies. Electron microscopy has for many years made it possible to create pictures of such tiny molecules, but this typically requires purification of the molecules. To purify, you must first identify, meaning researchers had to infer what the intermediates were ahead of time rather than being able to watch the real process.

"My lab has been working on ribosome assembly intensively for about 15 years," said Williamson. "The basic steps were mapped out 30 years ago. What nobody really understood was how it happens inside cells."

Creating a New View

The NRAMM group, led by Scripps Research Associate Professors Clinton Potter and Bridget Carragher and working with Scripps Research Kellogg School of Science and Technology graduate students Anke Mulder and Craig Yoshioka, developed a new technique, described in the Science paper and dubbed discovery single-particle profiling, which dodges the purification problem by allowing successful imaging of unpurified samples. An automated data capture and processing system of the team's design enables them to decipher an otherwise impossibly complex hodgepodge of data that results.

For this project, second author Andrea Beck, a research assistant in the Williamson laboratory, purified ribosome components from cells of the common research bacterium Escherichia Coli. She then chemically broke these apart to create a solution of the components that form ribosomes. The components were mixed together and then were rapidly stained and imaged using electron microscopy. "We went in with 'dirty' samples that contained horribly complex mixtures of all different particles," said Williamson.

Mulder, who is first author on the paper, collected and analyzed the particles that were formed during the ribosome assembly reaction. Using the team's advanced algorithms, they were able to process more than a million data points from the electron microscope to ultimately produce molecular pictures.

The Pieces Fit

The team produced images that the scientists were able to match like puzzle pieces to parts of ribosomes, offering strong confirmation that they had indeed imaged and identified actual chemical intermediates in the path to ribosome production. "We always saw the same thing no matter how we processed the data, and this led us to believe this was real," said Williamson.

Further confirmation came as the researchers imaged components from different timeframes. After breaking down ribosome components, the scientists prepared samples at various stages allowing enough time for the molecular mix to begin combining as they do during ribosome creation in cells.

Imaging this time series, the team was able to show higher concentrations of larger, more complex molecules and fewer smaller molecules as time elapsed. These results fit with the limited information that was already available about the timing of formation steps, providing further confirmation of the team's success.

Interestingly, this work also confirmed that there are more than one possible paths in ribosome formation, a phenomenon known as parallel assembly that been suggested by prior research but never definitively confirmed.

Long-Term Potential

Williamson says that with the information now at hand, they will be able to move forward with studies of which additional molecules might be present in cells and essential for ribosome formation. Such data could offer exciting medical potential.

All bacteria contain and are dependent on ribosomes. Identification of molecules required for ribosome assembly could offer new targets for antibiotic drugs aimed at killing bacteria. "If we can figure out how to inhibit assembly, that would be a very important therapeutic avenue," said Williamson.

There are also indications that some diseases such as Diamond Blackfan Anemia might be caused, at least in some cases, by errors in ribosome production. Better understanding of that production could also reveal ways such errors might be repaired to cure or prevent disease.

At the more basic level, this successful project has also proven techniques that Scripps Research scientists and other researchers can apply to allow similar imaging and understanding of other complex but critical cellular processes.

In addition to Williamson, Mulder, Beck, Yoshioka, Potter, and Carragher, authors of the paper, entitled "Visualizing Ribosome Biogenesis: Parallel Assembly Pathways for the 30S Subunit," were Anne Bunner and Ronald Milligan from Scripps Research.

This research was supported by the National Institutes of Health and a fellowship from the National Science Foundation.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, Scripps Research currently employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Headquartered in La Jolla, California, the institute also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida. For more information, see www.scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>