Scripps Research Scientists Uncover New Role for Gene in Maintaining Steady Weight

Against the backdrop of the growing epidemic of obesity in the United States, scientists from the Florida campus of The Scripps Research Institute have made an important new discovery regarding a specific gene that plays an important role in keeping a steady balance between our food intake and energy expenditure. The study may help scientists better understand the keys to fighting obesity and related disorders such as diabetes.

The study, which was published in the November 25, 2011 print edition of The Journal of Biological Chemistry, focused on the melanocortin-3 receptor (MC3R), which normally responds to signals of nutrient intake.

“What we discovered was quite a surprise,” said Scripps Research Associate Professor Andrew Butler, who led the study. “We thought that the actions of the receptor expressed in the brain would be critical for metabolic homeostasis. However, what we found is that actions of the receptor expressed outside the brain appear to be equally important.”

The existence of drug targets in areas outside of the central nervous system (the body’s “periphery”) might help in the effort to develop drugs that influence metabolism without major side effects, Butler said.

The findings were made possible by the team’s development of a new transgenic animal model, where expression of the MC3R gene can be selectively “switched on” in different cell types.

In the study, the suppression of MC3R expression in the brain and peripheral tissues had a marked impact on metabolic homeostasis (equilibrium). Interestingly, mice expressing the MC3R gene in the brain only displayed an obese phenotype (physical appearance) similar to those where all types of expression was suppressed, indicating that actions of this receptor in the brain are not sufficient to protect against weight gain. The finding that loss of MC3R activity in the periphery impairs metabolic homeostasis is startling, Butler said, and point to a distinct role for MC3R signaling in the peripheral tissues. However, how the actions of these receptors impacts on obesity remains to be determined.

“It’s clear that these peripheral receptors are important and the new mouse model will let us explore that potential,” Butler said.

The first author of the study, “Genetic dissection of melanocortin-3 receptor function suggests roles for central and peripheral receptors in energy homeostasis,” is Karima Begriche of Scripps Research. In addition to Butler and Begriche, other authors include Jari Rossi, Danielle Skorupa, Laura A. Solt, Brandon Young, and Thomas P. Burris from The Scripps Research Institute in Florida; Randall L. Mynatt and Jingying Zhang at the Pennington Biomedical Research Center, which is part of the Louisiana State University System; and Peter R. Levasseur and Daniel L. Marks at the Oregon Health & Science University. See http://www.jbc.org/content/early/2011/10/07/jbc.M111.278374.abstract?sid=8a17ce75-de95-45d1-b688-a039da52b5f1

The study was supported by National Institutes of Health and the Pennington Biomedical Research Foundation.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.

For information:
Eric Sauter
Tel: 215-862-2689
erics165@comcast.net
Mika Ono
Tel: 858-784-2052
Fax: 858-784-8136
mikaono@scripps.edu

Media Contact

Mika Ono EurekAlert!

More Information:

http://www.scripps.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors