Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists pinpoint shape-shifting mechanism critical to protein signaling

07.09.2011
Findings show how form controls function in sought-after therapeutic target

In a joint study, scientists from the California and Florida campuses of The Scripps Research Institute have shown that changes in a protein's structure can change its signaling function and they have pinpointed the precise regions where those changes take place.

The new findings could help provide a much clearer picture of potential drugs that would be both effective and highly specific in their biological actions.

The study, led by Patrick Griffin of Scripps Florida and Raymond Stevens of Scripps California, was published in a recent edition of the journal Structure.

The new study focuses on the â2-adrenergic receptor, a member of the G protein-coupled receptor family. G protein-coupled receptors convert extracellular stimuli into intracellular signals through various pathways. Approximately one third of currently marketed drugs (including for diabetes and heart disease) target these receptors.

Scientists have known that when specific regions of the receptor are activated by neurotransmitters or hormones, the structural arrangement (conformation) of the receptor is changed along with its function.

"While it's accepted that these receptors adopt multiple conformations and that each conformation triggers a specific type of signaling, the molecular mechanism behind that flexibility has been something of a black box," said Griffin, who is chair of the Scripps Research Department of Molecular Therapeutics and director of the Scripps Florida Translational Research Institute. "Our findings shed significant light to it."

The study describes in structural detail the various regions of the receptor that are involved in the changes brought about by selective ligands (ligands are molecules that bind to proteins to form an active complex), which, like a rheostat, run the gamut among activating the receptor, shutting it down, and reversing its function, as well as producing various states in between.

To achieve the results described in the study, the team used hydrogen-deuterium (HDX) mass spectrometry to measure the impact of interaction of various functionally selective ligands with the â2-adrenergic receptor. A mass spectrometer determines the mass of fragments from the receptor by measuring the mass-to-charge ratio of their ions. HDX has been used to examine changes in the shape of proteins and how these shape changes relate to protein function. The approach is often used to characterize protein-protein interactions that are critical for signal transduction in cells and to study protein-folding pathways that are critical to cell survival.

"At this early stage in understanding GPCR structure and function, it is important to view the entire receptor in combination with probing very specific regions," said Stevens, who is a professor in the Scripps Research Department of Molecular Biology. "Hydrogen-deuterium exchange mass spectrometry has the right timescale and resolution to asked important questions about complete receptor conformations in regards to different pharmacological ligand binding. The HDX data combined with the structural data emerging will really help everyone more fully understand how these receptors work."

"Using the HDX technology we can study the intact receptor upon interaction with ligands and pinpoint regions of the receptor that have undergone change in position or flexibility," Griffin said. "By studying a set of ligands one can start to develop patterns that are tied to activation of the receptor or shutting it down. Once we get a picture of what a functional ligand looks like, it might be possible to develop a drug to produce a highly selective therapeutic effect."

The lead author of the study, "Ligand-Dependent Perturbation of the Conformational Ensemble for the GPCR b2 Adrenergic Receptor Revealed by HDX," is Graham M. West of Scripps Research. Other authors include Ellen Y.T. Chien, Jovylyn Gatchalian, and Michael J. Chalmers of Scripps Research, and Vsevolod Katritch of the University of California, San Diego.

The study was supported by the National Institutes of Health.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>