Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists elevate little-studied cellular mechanism to potential drug target

12.12.2011
For years, science has generally considered the phosphorylation of proteins -- the insertion of a phosphorous group into a protein that turns it on or off -- as perhaps the factor regulating a range of cellular processes from cell metabolism to programmed cell death.

Now, scientists from the Florida campus of The Scripps Research Institute have identified the importance of a novel protein-regulating mechanism -- called sulfenylation -- that is similar to phosphorylation and may, in fact, open up opportunities to develop new types of drugs for diseases such as cancer.

The study was published December 11, 2011, in an advance online edition of the journal Nature Chemical Biology.

"With this paper, we've elevated protein sulfenylation from a marker of oxidative stress to a bona fide reversible post translational modification that plays a key regulatory role during cell signaling," said Kate Carroll, a Scripps Research associate professor who led the study. "The sulfenyl modification is the new kid on the block."

During periods of cellular stress, caused by factors such as exposure to UV radiation or chronic disease states like cancer, the level of highly reactive oxygen-containing molecules can increase, resulting in inappropriate modification of proteins and cell damage. In sulfenylation, one oxidant, hydrogen peroxide, functions as a messenger that can activate cell proliferation through oxidation of cysteine residues in signaling proteins, producing sulfenic acid. Cysteine, an amino acid (natural protein building block), is highly oxidant sensitive.

Conventional wisdom has long held that if hydrogen peroxide does exist in the cell at any appreciable level, it represents a disease state, not a regulatory event. The new study shows that sulfenylation is actually a positive protein modification, and that it's required for signaling through the pathway, a validation of a long-held belief in some scientific circles that hydrogen peroxide functions as a general signaling molecule, not an oxidative "bad boy" to be eliminated at all costs.

A New Chemical Probe

To explore the process, Carroll and her colleagues developed a highly selective chemical probe -- known as DYn-2 -- with the ability to detect minute differences in sulfenylation rates within the cell.

With the new probe, the team was able to show that a key signaling protein, epidermal growth factor receptor (EGFR), is directly modified by hydrogen peroxide at a critical active site cysteine, stimulating its tyrosine kinase activity.

The technology described in the new paper is unique, Carroll said, because it allows scientists to trap and detect these modifications in situ, without interfering with the redox balance of the cell. "Probing cysteine oxidation in a cell lysate is like looking for a needle in a haystack," she said, "our new approach preserves labile sulfenyl modifications and avoids protein oxidation artifacts that arise during cell homogenization."

As with phosphorylation, future studies on sulfenylation will delve into the exciting discovery of new enzymes, new signaling processes, and new mechanisms of regulation.

Another broad impact of these findings, Carroll said, is to open up an entirely new mechanism to exploit for the development of therapeutics, particularly in cancer. "It should influence the design of inhibitors that target oxidant-sensitive cysteine residues in the future," she said.

The first author of the study, "Peroxide-dependent Sulfenylation of the EGFR Catalytic Site Enhances Kinase Activity," is Candice E. Paulsen of the University of Michigan. Other authors include Thu H. Truong and Stephen E. Leonard of the University of Michigan; and Francisco J. Garcia, Arne Homann and Vinayak Gupta of Scripps Research.

The study was supported by the Camille Henry Dreyfus Teacher Scholar Award and the American Heart Association.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>