Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists create cell assembly line

04.03.2011
New technology synthesizes cellular structures from simple starting materials

Borrowing a page from modern manufacturing, scientists from the Florida campus of The Scripps Research Institute have built a microscopic assembly line that mass produces synthetic cell-like compartments.

The new computer-controlled system represents a technological leap forward in the race to create the complex membrane structures of biological cells from simple chemical starting materials.

"Biology is full of synthetic targets that have inspired chemists for more than a century," said Brian Paegel, Scripps Research assistant professor and lead author of a new study published in the Journal of the American Chemical Society. "The lipid membrane assemblies of cells and their organelles pose a daunting challenge to the chemist who wants to synthesize these structures with the same rational approaches used in the preparation of small molecules."

While most cellular components such as genes or proteins are easily prepared in the laboratory, little has been done to develop a method of synthesizing cell membranes in a uniform, automated way. Current approaches are capricious in nature, yielding complex mixtures of products and inefficient cargo loading into the resultant cell-like structures.

The new technology transforms the previously difficult synthesis of cell membranes into a controlled process, customizable over a range of cell sizes, and highly efficient in terms of cargo encapsulation.

The membrane that surrounds all cells, organelles and vesicles – small subcellular compartments – consists of a phospholipid bilayer that serves as a barrier, separating an internal space from the external medium.

The new process creates a laboratory version of this bilayer that is formed into small, cell-sized compartments.

How It Works

"The assembly-line process is simple and, from a chemistry standpoint, mechanistically clear," said Sandro Matosevic, research associate and co-author of the study.

A microfluidic circuit generates water droplets in lipid-containing oil. The lipid-coated droplets travel down one branch of a Y-shaped circuit and merge with a second water stream at the Y-junction. The combined flows of droplets in oil and water travel in parallel streams toward a triangular guidepost.

Then, the triangular guide diverts the lipid-coated droplets into the parallel water stream as a wing dam might divert a line of small boats into another part of a river. As the droplets cross the oil-water interface, a second layer of lipids deposits on the droplet, forming a bilayer.

The end result is a continuous stream of uniformly shaped cell-like compartments.

The newly created vesicles range from 20 to 70 micrometers in diameter—from about the size of a skin cell to that of a human hair. The entire circuit fits on a glass chip roughly the size of a poker chip.

The researchers also tested the synthetic bilayers for their ability to house a prototypical membrane protein. The proteins correctly inserted into the synthetic membrane, proving that they resemble membranes found in biological cells.

"Membranes and compartmentalization are ubiquitous themes in biology," noted Paegel. "We are constructing these synthetic systems to understand why compartmentalized chemistry is a hallmark of life, and how it might be leveraged in therapeutic delivery."

"Stepwise Synthesis of Giant Unilamellar Vesicles on a Microfluidic Assembly Line," was published February 10, 2011. The research was supported by the National Institutes of Health. For more information, see http://pubs.acs.org/doi/abs/10.1021/ja109137s.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>