Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida Scientists Uncover Inflammatory Circuit That Triggers Breast Cancer

24.02.2012
Findings Point to Potentially Effective New Therapeutic Target for Cancer Treatment and Prevention

Although it’s widely accepted that inflammation is a critical underlying factor in a range of diseases, including the progression of cancer, little is known about its role when normal cells become tumor cells.

Now, scientists from the Florida campus of The Scripps Research Institute have shed new light on exactly how the activation of a pair of inflammatory signaling pathways leads to the transformation of normal breast cells to cancer cells.

The study, led by Jun-Li Luo, an assistant professor at Scripps Florida, was published online before print by the journal Molecular Cell on February 23, 2012.

The scientists’ discovery points to the activation of a self-sustaining signaling circuit that inhibits a specific RNA, a well-known tumor suppressor that helps limit the spread of cancer (metastasis). Therapies that disable this circuit and halt this miRNA repression could have the potential to treat cancer.

The Spark that Ignites Trouble

In the new study, scientists identified the specific pathways that transform breast epithelial cells into active cancer cells.

The researchers found immune/inflammatory cells ignite the transient activation of MEK/ERK and IKK/NF-kB pathways; the MEK/ERK pathway then directs a consistent activation of a signaling circuit in transformed cells. This consistent signaling circuit maintains the malignant state of the tumor cells.

Luo compares this process to starting a car—a car battery starts the engine much like the transient signal activation turns on the consistent signal circuit. Once the engine is started, it no longer needs the battery.

The scientists go on to show that the initial activation of these pathways also activates IL6, a cytokine involved in a number of inflammatory and autoimmune diseases, including cancer. IL6 acts as a tumor initiator, sparking the self-sustaining circuit in normal breast cells necessary for the initiation and maintenance of their transformed malignant state.

In establishing that self-sustaining signal circuit, IL6 represses the action of microRNA-200c, which is responsible for holding down inflammation and cell transformation. Since enhanced microRNA-200c expression impairs the growth of existing cancer cells and increases their sensitivity to anti-tumor drugs, compounds that disable microRNA-200c repression have the potential to act as a broad-spectrum therapeutic.

Interestingly, the new findings dovetail with the “multiple-hits theory” of tumor formation, which posits that once normal cells in the human body accumulate enough pre-cancerous mutations, they are at high-risk for transformation into tumor cells. While the newly described initial pathway activation is momentary and not enough to cause any lasting changes in cell behavior, it may be just enough to tip the cell’s transformation to cancer, especially if it comes on top of an accumulation of other cellular changes.

The first author of the study, “IL6-Mediated Suppression of Mir-200c Directs Constitutive Activation of an Inflammatory Signaling Circuit That Drives Transformation and Tumorigenesis,” is Matjaz Rokavec of Scripps Research. Other authors include Weilin Wu, also of Scripps Research.

The study was supported by the National Institute of Health, the United States Department of Defense, the Florida Department of Health, and Frenchman’s Creek Women for Cancer Research.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.
For information:
Mika Ono
Tel: 858-784-2052
Fax: 858-784-8136
mikaono@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
05.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
05.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>