Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Screening technique uncovers 5 new plant activator compounds

11.09.2012
Immune-priming compounds identified using new screening technique protect crops without affecting plant growth, crop yield

A new high-throughput screening technique developed by researchers at the RIKEN Plant Science Center (PSC) has been used to uncover five novel immune-priming compounds in Arabidopsis plants.

Discovery of the compounds, which enhance disease resistance without impacting plant growth or crop yield, establishes the new technique as a powerful asset in the battle to protect crops from damaging pathogens.

Plant activators, compounds that activate a plant's immune system in response to invasion by pathogens, play a crucial role in crop survival by triggering a range of immune responses. Unlike pesticides, plant activators are not pathogen specific and also not affected by drug resistance, making them ideal for use in agriculture. Wet-rice farmers across East Asia use plant activators as a sustainable means to enhance crop durability without the environmental consequences of microbial pesticides.

One of the key problems of plant activators, however, is that the activation of plant responses they trigger is often associated with arrested growth and reductions in crop yield. Determining why this is so is difficult because despite their widespread use, the molecular mechanisms governing how plant activators work are largely unknown.

The new screening technique developed by the PSC team overcomes this challenge by distinguishing between compounds that induce immune responses on their own from those that do so exclusively in the presence of a pathogen. The former class of compounds, which includes known plant activators, can be toxic to cells and was thus eliminated in the screening. The resulting five compounds, identified from a total of 10,000 compounds screened, enhance resistance against pathogenic Pseudomonas bacteria by priming immune response without directly activating defense genes.

Further investigation revealed that the five compounds inhibit two enzymes that inactivate the defense hormone salicylic acid (SA glucosyltransferases or SAGTs), and gene knockout experiments confirmed that plants without these enzymes exhibit enhanced disease resistance. Together, the results establish the effectiveness of the new technique for finding useful plant activators and the power of SA metabolism as a strategy for crop protection.

Reference:

Yoshiteru Noutoshi, Masateru Okazaki, Tatsuya Kida, Yuta Nishina, Yoshihiko Morishita, Takumi Ogawa, Hideyuki Suzuki, Daisuke Shibata, Yusuke Jikumaru, Atsushi Hanada, Yuji Kamiya, and Ken Shirasu. Novel Plant Immune-Priming Compounds Identified via High-Throughput Chemical Screening Target Salicylic Acid Glucosyltransferases in Arabidopsis. The Plant Cell, 2012. DOI: doi/10.1105/tpc.112.098343

About RIKEN

RIKEN is Japan's flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.
About the RIKEN Plant Science Center

With rapid industrialization and a world population set to top 9 billion within the next 30 years, the need to increase our food production capacity is more urgent today than it ever has been before. Avoiding a global crisis demands rapid advances in plant science research to boost crop yields and ensure a reliable supply of food, energy and plant-based materials.

The RIKEN Plant Science Center (PSC), located at the RIKEN Yokohama Research Institute in Yokohama City, Japan, is at the forefront of research efforts to uncover mechanisms underlying plant metabolism, morphology and development, and apply these findings to improving plant production. With laboratories ranging in subject area from metabolomics, to functional genomics, to plant regulation and productivity, to plant evolution and adaptation, the PSC's broad scope grants it a unique position in the network of modern plant science research. In cooperation with universities, research institutes and industry, the PSC is working to ensure a stable supply of food, materials, and energy to support a growing world population and its pressing health and environmental needs.

Reach us on Twitter: @rikenresearch

RIKEN Global Relations Office | EurekAlert!
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease
17.02.2020 | Science China Press

nachricht Catalyst deposition on fragile chips
17.02.2020 | Ruhr-University Bochum

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease

17.02.2020 | Life Sciences

Artificial intelligence is becoming sustainable!

17.02.2020 | Information Technology

Catalyst deposition on fragile chips

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>