Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scorpio rising

23.03.2012
An elusive new scorpion species from California lives underground

Even in places as seemly well-studied as the national parks of North America, new species are still being discovered. Using ultraviolet light that cause scorpions to fluoresce a ghostly glow, researchers from the University of Nevada, Las Vegas (UNLV) have discovered an intriguing new scorpion in Death Valley National Park. They named the species Wernerius inyoensis, after the Inyo Mountains where it was found. The study was published in the open access journal ZooKeys.


This is a scorpion glowing under ultraviolet light. This specimen is a Northern Scorpion, a broadly distributed species that was also found in the Inyo Mountains. Credit: Michael Webber

This new species is small, only 16 mm in length. "We almost overlooked this one during the survey" said Matthew Graham, a PhD Candidate with the School of Life Sciences at UNLV. Matt discovered the scorpion along with his father who was volunteering that night. "Only a single male individual was found, but the physical uniqueness was enough to identify it as a new species", said Michael Webber, another PhD Candidate from UNLV who described the specimen. This new scorpion appears to be closely related to two other species found over 400 kilometers away at Joshua Tree National Park and along the lower Colorado River. This group of scorpions is most easily identified by the presence of a conspicuous spine at the base of the stinger, the function of which, if any, is unknown.

The previously known species are also rarely observed in the wild, and this elusive nature has led to speculation that these scorpions occur at very low densities or have only sporadic surface activity. However, the rocky terrain in which the previous species were found and the discovery of the new species at the base of a talus slope, hint at the possibility that these scorpions are subterrestrial, spending their lives deep in rock crevices or in the interstitial spaces among piles of loose rock.

Scorpions are quite common within arid regions where they can comprise a large component of biological diversity. The new species was discovered during field surveys funded by the National Park Service as part of efforts to develop better inventories for all organisms occurring within the parks.

"In North America, inventories for mammals, birds, reptiles and amphibians are pretty well developed, and we have a good handle on higher-order plants, but for many groups of smaller organisms taxonomic inventories will no doubt lead to numerous new discoveries" said Dr. Jef Jaeger, a Research Assistant Professor at UNLV who initiated and oversaw the scorpion surveys.

In the face of regional environmental changes brought about by human actions and the potential for larger changes that global warming may bring, many scientists and resource managers place new importance on efforts to document and catalog species diversity.

Original source:

Webber MM, Graham MR, Jaeger JR (2012) Wernerius inyoensis, an elusive new scorpion from the Inyo Mountains of California (Scorpiones, Vaejovidae). ZooKeys 177: 1-13. doi: 10.3897/zookeys.177.2562

Posted by Pensoft Publishers.

Michael M. Webber | EurekAlert!
Further information:
http://www.unlv.nevada.edu

More articles from Life Sciences:

nachricht Structure of a mitochondrial ATP synthase
19.11.2019 | Science For Life Laboratory

nachricht Mantis shrimp vs. disco clams: Colorful sea creatures do more than dazzle
19.11.2019 | University of Colorado at Boulder

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Black carbon found in the Amazon River reveals recent forest burnings

20.11.2019 | Ecology, The Environment and Conservation

Outback telescope captures Milky Way center, discovers remnants of dead stars

20.11.2019 | Physics and Astronomy

The ever-changing brain: Shining a light on synaptic plasticity

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>