Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unmask Key HIV Protein, Open Door for New AIDS Drugs

26.09.2008
University of Michigan scientists have provided the most detailed picture yet of a key HIV accessory protein that foils the body’s normal immune response. Based on the findings, which appear online in the journal PLoS Pathogens, the team is searching for new drugs that may someday allow infected people to be cured and no longer need today’s AIDS drugs for a lifetime.

“There’s a big hole in current therapies, in that all of them prevent new infection, but none attack the cells that are already infected and hidden from the immune response,” says Kathleen L. Collins, M.D., Ph.D., the study’s senior author and a U-M associate professor in both internal medicine and microbiology and immunology.

In people infected with HIV (human immunodeficiency virus), the virus that causes AIDS, there’s an unsolved problem with current anti-viral drugs. Though life-saving, they cannot root the virus out of the body. Infected cells are able to live on, undetected by the immune system, and provide the machinery for the virus to reproduce and spread.

“People have to be on the existing drugs, and when they’re not, the virus rebounds. If we can develop drugs that seek out and eradicate the remaining factories for the virus, then maybe we could eradicate the disease in that person,” Collins says.

Research details:
The new research details the complex actions of a protein, HIV-1 Nef, that is known to keep immune system cells from doing their normal jobs of detecting and killing infected cells.

Collins and her team show how Nef disables two key immune system players inside an infected cell. These are molecules called major histocompatability complex 1 proteins (MHC-1) that present HIV antigens to the immune system, and CD4, the cell-surface receptor that normally locks onto a virus and allows it to enter the cell.

Collins likens MHC-1 to motion detectors on a house, which send the first signal to a monitoring station if an invader breaks in.

“The immune system, especially the cytotoxic T lymphocytes, are like the monitors who get the signal that there’s a foreign invader inside the cell, and send out police cars,” she says. “The ‘police’ are toxic chemicals produced by T lymphocyte cells, which kill the cell that harbors the invader.”

By in effect pushing the MHC-I proteins into an infected cell’s “trash bin” so they fail to alert the T lymphocytes, Nef’s actions allow active virus to hide undetected and reproduce. Also, once a cell has been infected, Nef destroys CD4. The result is that this encourages new virus to spread to uninfected cells.

Nef’s activities are variable and complex. But the research team’s findings suggest that the many pathways involved may end in a final common step. That could make it possible to find a drug that could block several Nef functions.

Implications:
Collins’ lab is now screening drug candidates to find promising Nef inhibitors. Such drugs, which are at least 10 years away from use in people, would supplement, not replace, existing anti-viral drugs given to HIV-infected people. The new drugs would target the reservoirs where the virus hides.

In developing countries, the new drugs could have a huge impact, Collins says. Today, children born with HIV infection start taking the existing anti-HIV drugs at birth. It’s very hard to continue costly treatments for a lifetime. But if children could be cured within a few years, global HIV treatment efforts could spread their dollars further and be much more successful, she says.

Additional U-M authors are first author Malinda R. Schaefer, Ph.D.; Elizabeth R. Wonderlich, Jeremiah F. Roeth and Jolie A. Leonard.

Funding for the research came from the National Institutes of Health and U-M.

Citation: PLoS Pathogens, doi:10.1371/journal.ppat.1000131

Anne Rueter | Newswise Science News
Further information:
http://www.umich.edu

Further reports about: Aids CD4 HIV MHC-1 Nef Protein drugs immune immune system infected infected cells lymphocyte pathogens

More articles from Life Sciences:

nachricht A Varied Menu
25.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Key evidence associating hydrophobicity with effective acid catalysis
25.03.2019 | Tokyo Metropolitan University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>