Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unlock Secret of Rabies Transmission in Bats

06.08.2010
Samples from 23 species of North American bats lead to new look at cross-species disease transmission

Most infectious diseases infect multiple host species, but to date, efforts to quantify the frequency and outcome of cross-species transmission (CST) of these diseases have been severely limited.

This lack of information represents a major gap in knowledge of how diseases emerge, and from which species they will emerge.

A paper published this week in the journal Science by a team of researchers led by Daniel Streicker of the University of Georgia has begun to close that gap.

Results of a study, conducted by Streicker and co-authors from the U.S. Centers for Disease Control, the University of Tennessee-Knoxville, and Western Michigan University, provide some of the first estimates for any infectious disease of how often CST happens in complex, multi-host communities--and the likelihood of disease in a new host species.

"Some of the deadliest human diseases, including AIDS and malaria, arose in other species and then jumped to humans," said Sam Scheiner of the National Science Foundation (NSF)'s Division of Environmental Biology, which co-funded the research with NSF's Directorate for Geosciences through the joint NIH-NSF Ecology of Infectious Diseases Program.

"Understanding that process," said Scheiner, "is key to predicting and preventing the next big outbreak."

Rabies is an ideal system to answer these questions, believes Streicker.

The disease occurs across the country, affects many different host species, and is known to mutate frequently. Although cases of rabies in humans are rare in the U.S., bats are the most common source of these infections.

To determine the rate of CST, and what outcomes those transmissions had, Streicker and his colleagues used a large dataset, unprecedented in its scope, containing hundreds of rabies viruses from 23 North American bat species.

They sequenced the nucleoprotein gene of each virus sample and used tools from population genetics to quantify how many CST events were expected to occur from any infected individual.

Their analysis showed that, depending on the species involved, a single infected bat may infect between 0 and 1.9 members of a different species; and that, on average, CST occurs only once for every 72.8 transmissions within the same species.

"What's really important is that molecular sequence data, an increasingly cheap and available resource, can be used to quantify CST," said Streicker.

Scientist Sonia Altizer of UGA agrees.

"This is a breakthrough," said Altizer. "The team defined, for the first time, a framework for quantifying the rates of CST across a network of host species that could be applied to other wildlife pathogens, and they developed novel methods to do it."

The researchers also looked at the factors that could determine the frequency of CST, using extensive data about each bat species, such as foraging behavior, geographic range and genetics.

"There's a popular idea that because of their potential for rapid evolution, the emergence of these types of viruses is limited more by ecological constraints than by genetic similarity between donor and recipient hosts," said Streicker. "We wanted to see if that was the case."

He found, instead, that rabies viruses are much more likely to jump between closely related bat species than between ones that diverged in the distant past.

Overlapping geographic range was also associated with CST, but to a lesser extent.

"CST and viral establishment do not occur at random, but instead are highly constrained by host-associated barriers," Streicker said. "Contrary to popular belief, rapid evolution of the virus isn't enough to overcome the genetic differences between hosts."

Streicker believes that what he and colleagues have learned about bat rabies will be influential in understanding the ecology, evolution and emergence of many wildlife viruses of public health and conservation importance.

"The basic knowledge we've gained will be key to developing new intervention strategies for diseases that can jump from wildlife to humans."

Streicker is continuing his work with rabies and bats with funding for a three-year study from NSF.

He and Altizer, in collaboration with investigators at the CDC, University of Michigan and the Peruvian Ministries of Health and Agriculture, will explore how human activities affect the transmission of the rabies virus in vampire bats in Peru--and how those changes might alter the risk of rabies infection for humans, domesticated animals, and wildlife.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Beth Gavrilles, University of Georgia (706) 542-7247 bethgav@uga.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

Further reports about: CST Foundation NSF Science TV Secret Streicker Transmission bats infectious disease rabies

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>